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We study the asymptotic statistical behavior of the 2-dimensional periodic 
Lorentz gas with an infinite horizon. We consider a particle moving freely in the 
plane with elastic reflections from a periodic set of fixed convex scatterers. We 
assume that the initial position of the particle in the phase space is random with 
uniform distribution with respect to the Liouville measure of the periodic 
problem. We are interested in the asymptotic statistical behavior of the particle 
displacement in the plane as the time t goes to infinity. We assume that the par- 
ticle horizon is infinite, which means that the length of free motion of the par- 
ticle is unbounded. Then we show that under some natural assumptions on the 
free motion vector autocorrelation function, the limit distribution of the particle 
displacement in the plane is Gaussian, but the normalization factor is (t log t) 1/2 
and not t t/2 as in the classical case. We find the covariance matrix of the limit 
distribution. 

KEY WORDS: Lorentz gas; periodic configuration of scatterers; infinite 
horizon; corridors; statistical behavior of trajectories; "super'-diffusion; 
logarithmic corrections to square-root normalization; Gaussian limit distribu- 
tion. 

1. I N T R O D U C T I O N  

In  the  p re sen t  p a p e r  we inves t iga te  s ta t i s t ica l  p rope r t i e s  of  the  t w o - d i m e n -  

s iona l  L o r e n t z  gas  wi th  a pe r iod i c  c o n f i g u r a t i o n  of  scat terers .  T h e  L o r e n t z  

gas  is an  e n s e m b l e  of  n o n i n t e r a c t i n g  p o i n t  pa r t i c les  wh ich  m o v e  freely wi th  

e las t ic  re f lec t ions  f r o m  fixed scat terers .  I t  was  i n t r o d u c e d  in the  b e g i n n i n g  

of  this c e n t u r y  in w o r k s  of  L o r e n t z ,  (11 whe re  it was  a s s u m e d  tha t  the  scat-  

terers  a re  r a n d o m l y  d i s t r i bu t ed  in space.  T h e  L o r e n t z  gas is a bas ic  m o d e l  
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for linearized kinetic equations. 12"3) Ergodic properties of the Lorentz gas 
were studied in works refs. 4-6. 

In the present work we will consider the model of a Lorentz gas in 
which the scatterers are convex and they form a periodic (crystal) lattice in 
the plane. As a basic example, one may imagine a set of circular scatterers 
of a radius a < 1/2 centered at the sites of a square lattice with unit space 
(see Fig. 1). Since the particles in the Lorentz gas do not interact, they 
move independently. So let us consider the motion of one of the particles 
and assume that the initial position of the particle is distributed according 
to the Liouville measure of the periodic problem on the surface Ivl = 1. The 
main question we are interested in is the asymptotic behavior of typical 
(with respect to the Liouville measure) trajectories x(t) as t ~  oe. More 
precisely, the problem can be formulated as follows: What is the right 
normalization N(t) such that there exists a limit distribution of 
[ x ( t ) -  x(O)]/N(t) as t--* Go and what is the limit distribution? 

This problem and the related one on the asymptotics of the velocity 
autocorrelation function have been studied intensively over the 10 years 
both theoretically and numerically (see refs. 8-19 and references cited 
there). It turns out that the situation is different for periodic configurations 
of scatterers with a "finite horizon" and for those with an "infinite horizon" 
("without horizon" in another terminology). 

By definition a periodic configuration of scatterers has a finite horizon 
if the length of free motion of the particle is bounded. Otherwise it has an 
infinite horizon. It is noteworthy that actually if a periodic configuration of 
scatterers has an infinite horizon, then there exist trajectories in which the 
particle does not reflect from the scatterers at all (see a more detailed 
description of such trajectories in the next section). In the example con- 

, /  

Fig. 1. Square lattice of circular scatterers. 
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sidered above of the square lattice of circular scatterers of radius a < 1/2 
the horizon is always infinite, since the lines { x =  1/2} and { y =  1/2} do 
not intersect any scatterer. To construct an example of a system with a 
finite horizon one may consider a configuration of circular scatterers cen- 
tered at the sites of a triangular lattice with unit space. Then if the radius 
a of scatterers lies in the interval ~ / 4  < a < 1/2, the system has a finite 
horizon. 

It was shown in refs. 7 and 8 that for any periodic configuration of 
scatterers with a finite horizon the velocity autocorrelation function 
satisfies the estimate 

I ((v(0), v(t)))]  < C e x p ( - t c F )  (1.1) 

with some C, ~c > 0 and 0 < 7 ~< 1, where the average ( . )  is taken with 
respect to the Liouville measure of the periodic problem and (x, y) means 
the scalar product of vectors x and y. Numerical simulations (11t give the 
asymptotics 

((v(0), v(t~)) ) '-~ ( - 1 )" exp( - ~n ~) (1.2) 

with 7 ~ 0.42, tc ~ 1.4, where tn is the moment of the nth reflection of the 
particle from the scatterers. 

Denote 

( Ix( t )  - x(O)l 2) 
D( t ) - 4t (1.3) 

Since 

then 

x ( t ) - x ( 0 ) =  v(s) ds 

- ~  ofo 

((v(s), v(s'))) as as' 

<(v(O), v(s'-s))> ds as' 

((v(o), v(s'))) ds'ds 

Integrating by parts, we get that 

D(t) =2 ((v(0), v(s))) ds-  s((v(0), v(s))) ds (1.4) 
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SO 

1 E D ~  t~lim D ( t ) = ~  <(v(O),v(s))>ds (1.5) 

This is the celebrated Einstein-Green-Kubo formula for the diffusion 
coefficient (see, e.g., ref. 3). It shows that 

D = lim <lx( t ) -x(0)12> =l ib  <(v(0), v(s))> ds (1.6) 
,~ co 4t z J0 

In ref. 8 (see also ref. 27) it was proved that for a periodic configuration of 
scatterers with a finite horizon, x ( t ) -  x(0) obeys the central limit theorem, 
i.e., the limit in distribution, 

x ( t ) - x ( O )  
lim x/~ q (1.7) 

t --~ o o  

exists and q is a Gaussian random variable, ( q >  = 0. Moreover, 

y(s) = lim 
x(st) - x(O) 

,5 
is a Brownian process. It shows that for the periodic configuration of scat- 
terers with a finite horizon, x(t) - x(0) behaves at large t like a realization 
of a Brownian process. 

In ref. 15 some heuristic arguments were given (see also ref. 9 for more 
refined arguments) which predict the asymptotics 

const 
<(v(O), v(t))> ~ - -  (1.8) 

t 

for any periodic configuration of scatterers with an 
Substituting this asymptotics into (1.4), one gets that 

infinite horizon. 

( I x ( t ) -  x(0)l 2 > 
D(t) -- 4t const,  in t (1.9) 

so that the diffusion coefficient D = limt ~ ~ D(t) is infinite. One may expect 
from (1.9) that a right normalization for [ x ( t ) -  x(O)]/N(t) for which it has 
a limit distribution is N(t)= (t In t)l/2. O5'16'28) 

In the present paper we show that this is really the case and our main 
result can be formulated as follows: 
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For any periodic configuration o f  scatterers with an infinite horizon the 
limit in distribution 

x(t)-x(O) 
li~-- (t In t) 1/2 q (1.10) 

exists and !1 is a Gaussian random variable. 

Moreover, we find a formula which expresses in geometric terms the 
covariance matrix of q. The fundamental feature of the periodic configura- 
tion of scatterers with an infinite horizon is the existence of infinite 
corridors ("windows" in the terminology of ref. 16) along which a particle 
can move unboundedly long. It turns out that the faster running away of 
the particle to infinity than in the classical case is explained by the fact that 
the particle moves sometimes very long along the corridors. In numerical 
simulations one can see long "jumps" of the particle on the background of 
random Brownian-like motion. (19) 

To understand better the nature of those jumps, let us consider the 
discrete dynamics of the particle. Let x,  = x(t,)  be the position of the par- 
ticle in the plane at the moment of the nth reflection. We are interested in 
the asymptotics of x n - x 0 as n ~ o0 for typical trajectories. We can write 
that 

n--1 n--1 

X n - - X O :  2 ( X J + I - - X J ) :  2 r j  (1 .11)  
j = 0  j = 0  

which is the decomposition of the trajectory into segments of free motion. 
Hence 

Dn 
1 -=~ <lx.-xol~> 

1 n--1 n--1 

=4--n ~ 2 <(r,,rj)) 
i=0 j=O 

1 2 )  1 n - ,  1 

j = l  

n - 1  

j ( ( r0 ,  rj)> (1.12) 
j = l  

SO 

D ~  lira D . = ~ < l r o ] 2 > + ~  <(ro, U)> 
n~cx~ j = l  

(1.13) 

This is a discrete analog of the Einstein-Green-Kubo formula (1.5). 

822/66/1-2-21 
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It turns out (see refs. 16, 28, and 29 and Section 4 below) that because 
of the corridors the distribution function P ( R ) =  Pr{ [rj[ ~< R} of the length 
of free motion has a powerlike tail at infinity, 

const 
1 -  P(R) ~ Rz (1.14) 

(because of the invariance of the Liouville measure with respect to the 
dynamics, Pr{ ]rj] > R} does not depend on j).  It implies that the variance 
of Irjl, 

([rjl 2) = R 2 d P ( R )  

diverges logarithmically. 
On the other hand, we prove in Section 5 that the correlation function 

((r / ,  r f l )  is finite for any ivaj. Moreover, because of the strong ergodic 
properties of the system under consideration, one may expect that the 
correlation function is rapidly decreasing to zero when t i - j l  -* oo. So we 
deal in (1.11) with a sum of, in some sense, weakly dependent identically 
distributed random vectors rj whose distribution has a powerlike tail 
(1.14). We discuss this important point in more detail in Section 6 and we 
show that the limit behavior of this sum as n --* oo is the same as if rj were 
independent. Unfortunately, we do not have a full proof of this statement 
and our considerations in Section 6 are based on some natural conjectures 
concerning the character of the dependence of the vectors rj. Next we show 
that the logarithmic divergence of the variance of rj leads to logarithmic 
corrections in the normalization of xn - Xo and we find that 

X n - -  X 0 

lim (n In n) 1/2 - ~ 
n ~ o o  

where { is a Gaussian random vector variable. We get a formula for the 
covariance matrix of { which involves only some geometric characteristics 
of the lattice of scatterers. 

The setup of the paper is the following. In Section 2 we introduce some 
geometrical notions which characterize the periodic configuration of scat- 
terers with an infinite horizon. In Section 3 the discrete dynamics of billiard 
systems is discussed. In Section 4 we calculate the tail of the distribution of 
the free motion vectors and in Section 5 we estimate their correlation. In 
Section 6 we consider the limit distribution of the normalized trajectories in 
the discrete dynamics and in Section 7 we study it for the continuous-time 
dynamics. In Section 8 our main results are briefly summarized and more 
detailed calculations for square and triangular lattices of circular scatterers 
are presented. 
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2. C O R R I D O R S  IN S Y S T E M S  W I T H  AN INF IN ITE  H O R I Z O N  

In this section we give and recall some definitions and present some 
preliminary results concerning the Lorentz gas and billiards (see also, e.g., 
refs. 5, 20, and 24). A scatterer is an arbitrary, closed, bounded convex set 
(2 in R 2 whose boundary •/2 is a C4-smooth curve with bounded curvature 
radius. Let 121,..., ff~U be an arbitrary finite set of scatterers in the plane and 
el, e 2 e E 2 be a basis in E 2. We will call /21,..., ff~U the basic scatterers. 
Denote T i : x - - * x + e i  the shift in the vector ei, i = l ,  2, and let, for 

= (j, m, n), where 1 ~< j ~< N and m, n e Z, 

/2~ = TTT~/2 + 

be the shift of/2s in the vector me1 + ne2. Then 

{/2=, ~ e A  = {1 ..... N } •  2 } 

is a periodic configuration of scatterers with periods el, e2. In what follows 
we shall assume that the scatterers do not overlap, i.e., /2~ m/2e = ~ if 
~r 

The parallelogram 

D =  {x = x , e l  +X2ea[0 ~<xl, X2~< 1} 

is called thefundarnental domain. Without loss of generality we may assume 
that each basic scatterer ~ j  intersects with the fundamental domain. 

The basic example of a periodic configuration of scatterers is a set 
of circles of some radius a > 0  with centers in the integer points 
(rn, n) = me1 + ne2. In this example N =  1, i.e., there is one basic scatterer. 
Particular cases, which are applied usually in numerical simulations, are 
the quadratic lattice of scatterers, when el, e2 form an orthonormal basis 
(see Fig. 1), and the triangular lattice of  scatterers, when ]eli = [e21 and 
%, e2 form the angle ~z/3. 

A periodic configuration of sca t te re rs /2= { ~ ,  ~ e A }  is said to have 
a finite horizon if L > 0 exists such that any segment of the length L in the 
plane intersects some scatterer. This means that the length of free motion 
of the particle is bounded. Otherwise/2 is called a configuration with an 
infinite horizon. (3o~ 

Let /2 = {/2=, ~ e A } be a periodic configuration of scatterers with an 
infinite horizon and l =  {o~ltel + 092te2 + b  , t e E } ,  co 1, (.02 e E , b e e  2, be a 
straight line in E 2 which intersects no scatterers. Denote L = {l} the set of 
such lines. 

Proposition 2.1. (i) The set L =  {l} is nonempty. (ii) Any l ~ L  
is rational in the sense that (Ol/(O 2 is rational or infinite. (iii) The set L is 
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decomposed into a finite number of classes Lp/q with the same value of 
O)l/OO2=p/q~ Q ~J {~}. (iv) Lp/q consists of a countable number of open 
strips (corridors) such that any bounded domain in ~2 intersects with only 
a finite number of such strips. 

The proof of Proposition 2.1 is rather simple and we omit it. Now we 
will present without proof some results which describe the properties of 
corridors introduced in Proposition 2.1. We shall call two corridors C, C' 
equivalent iff C ' =  T T T ~  C with some integer m, n. Let us enumerate all the 
corridors which touch the basic scatterer s by Cjk, k = 1 ..... Nj; j = 1,..., N. 
We shall call {Cjk} the basic corridors. (Remark that in principle a basic 
corridor can touch several basic scatterers, so it can be enumerated several 
times.) One can see easily that any corridor C is equivalent to some basic 
corridor. 

It is clear that in corridors the particle can move unboundedly long. 
It turns out that also, on the contrary, each sufficiently long free path lies 
almost entirely in some corridor. Namely the following statement holds. 

Proposition 2.2. There exist Ro, R I > 0  such that any finite 
segment of the length R > Ro which intersects no scatterers lies entirely, 
except maybe for its extreme parts of total length less than R1, in some 
corridor. 

A simple corollary of Proposition 2.2 is the following statement. 

Proposition 2.3. Consider in the plane a segment [-x, y] of free 
motion, x e ~s y ~ ~/2~. There exists Ro > 0 such that if Ix - Yl > Ro, then 
sg~, s touch some corridor C from different sides of C. Moreover, for any 
e > 0 one can choose R0 in such a way that if I x -  Yl > Ro, then 

I x - x ~ l  <~, l y - x ~ l  < z  

where x~, x~ are the touching points of C and 0~, 0~,  respectively. 

Proposition 2.2 enables to prove also the following result. 

Proposition 2.4. Each trajectory of the particle in the billiard 
either has no reflections from the scatterers (then it lies entirely in some 
corridor) or has infinitely many reflections from the scatterers in both 
directions of time. 

3. DISCRETE D Y N A M I C S  

Let us recall some definitions and results from the billiard 
theory3 s'2~23) We introduce first a natural coordinate at the boundary of 
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each scatterer. To  this end let us fix an a rb i t ra ry  point  Oj s 6f2j at the 
bounda ry  of each basic scatterer and fix the point  O~ = T"~T~Oj at c~f2~ for 
~ =  (j, m, n). For  x ~ c3s a natural coordinate of x is the length of the arc 
O~x in the counterclockwise direction. 

Consider  a t ra jectory x(t)  of the particle in ~ 2 \ I . ) ~ A f 2 ~ ,  which 
has reflections f rom the scatterers (see Propos i t ion  2.4). Denote  
{ t , ,  - co < n < co } the t ime momen t s  of the reflections, in such a way that  

�9 .. < t _ ~ < t o < ~ O < t a < t 2 <  ... 

The nth  reflection is character ized by three quantities: e ,  = e( tn)~ A, the 
index of the scatterer;  s,  =sUn) ,  the natura l  coordinate  of the reflection 
point; and qn = rl(tn), the reflection angle (the angle with the sign between 
the velocity vector  v after the reflection and the outer  no rma l  vector  n at 
the reflection point) .  It  is clear that  the triple 2~ = ( ~ ,  sn, r/~) determines 
the whole t rajectory uniquely. In part icular ,  it determines the triple 
2, + ~ = (c~, + 1, s ,  + 1, q~ + 1) of the next reflection. The  m a p  

T: (en, sn, r/.) ~ (e~+l ,  sn+ 1, r/.+ 1) (3.1) 

is the Poincar6 section map.  It  acts in the phase space of triples 

( { (3.2) 

T: A ---, A and it determines the discrete dynamics:  2n = T~2o . 
Define the involut ion 

S: (c~, s, r/) --. (c~, s, - q )  (3.3) 

It  is easy to see that  S is a symmetry for T in the sense that  

S 2 = S T S T =  Id (3.4) 

(the identi ty map) ,  so T is invertible, 

T ' = S T S  

Another  impor t an t  p roper ty  of  T is that  it preserves the Liouville measure 
cos r/ds d~1, i.e., 

f f  c o s t l d s d q =  ~ f f  c o s q d s d q  (3.5) 
~EA T-I (B)  ~ A  

for any finite measurable  set B c A. 
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Consider  the m a p  i:~2---+-[] -2, which identifies all the points  
{x + me 1 + ne2, m, n e 7/} with x. In part icular,  i identifies all the scatterers 
{O(j . . . .  ), m, n e Z} with ~ j ,  j =  1,..., N, so we can consider the scatterers 
~ 1  ..... ~'~N in q]-2 and a billiard system in T2\OI<j<N(2j .  It  is called the 
periodic billiard system, or the Sinai Billiard. ~2~ If  x( t)  = xl(t)  el + Xz(t) e2 
is a t ra jectory of the particle in the original billiard ~ 2 \ ~ . ) ~  A f f~ ,  then 
i ( x ( t ) ) = { X l ( t ) } e l + { X z ( t ) } e 2  is the corresponding trajectory in the 
periodic billiard. 

The phase  space of the periodic billiard is 

{ A o =  {0 ~<s< 10(2jl } • - 5~<t/~< (3.6) 
j = l  

which is the union of N cylinders, and the Poincar6 m a p  To 'A  o --+ A o is 
de termined by the condi t ion that  if T:(~,s ,  t l )~(~ ' , s ' , t l ' ) ,  where 

= (j, m, n), ~' = ( j ' ,  m' ,  n'), then T 0' (j, s, t/) ~ ( j ' ,  s', t/'). The  Poincar6 
m a p  preserves the probabi l i ty  Liouville measure  

~to( ds dtl ) = Z -1 cos n ds &l 
N N 

j = l  (2/ j =  1 

on Ao. In  what  follows we shall use the no ta t ion  

N 

( f ( ~ ) ) = - f a  f ( 2 l # ~  ~ f f  f ( 2 ) c~  ) . = ( j , s , t / )  
0 j = l  

A basic result of the billiard theory (s'2~23) is that  T o possesses s t rong 
ergodic propert ies  with respect to Po. This implies, in part icular ,  that  for 
typical trajectories after n reflections, as n ~ ~ ,  the fraction of the reflec- 
tions belonging to a given domain  B c Ao of the phase  space tends to the 
area  of B with respect to the measure  Po. 

F o r  the discrete dynamics  the p rob lem we are interested in can be for- 
mula ted  in the following way. Denote  x(2) = x(~, s, t/) e ~2 the point  in ~ =  
with the na tura l  coordinate  s (obviously it does not  depend on t/). Wha t  
is the asympto t ic  behavior  of x ( T " 2 ) - x ( 2 ) ,  when n - ~  ~ ,  with respect to 
the Liouville measure?  More  precisely, let us remark  that  x ( T " 2 ) - x ( 2 )  
can be viewed as a vector  function on A0 in the sense that  if 2 -- (~, s, t/), 
where ~ = (j, m, n), then x ( T " 2 ) - x ( 2 )  does not  depend on m, n. Then the 
p rob lem is: W h a t  is the asympto t ic  behavior  of ( [ x ( T ' 2 ) - x ( 2 ) l )  when 
n ~ ~ ,  and what  is the limit distr ibution when n ~ 0o (if it does exist) of 

x (T"2 )  - x().) 
(3.8) 

( ] x (Tn2 )  - x(2)[ ) 



2D Periodic Lorentz Gas 325 

where 2 is go-distributed on the phase space Ao? In a more general 
framework one may think of an absolutely continuous distribution 7(d2) 
for 2. Then an additional question is whether the limit distribution of the 
vector (3.8) is independent of 7- 

Denote 

r(~ . )  = x ( r , ~ )  - x ( ~ 4  

Remark that r(2) is the vector of free motion between points x(;t) and 
x(T2). As we noticed before, r(2) can be viewed as a vector function on the 
phase space Ao. Now we can represent x ( T n 2 ) -  x(2) as 

n l 

x ( T n 2 ) - x ( 2 ) =  ~ r(TJ2) (3.9) 
j = 0  

which is obviously the decomposition of x ( T " A ) - x ( 2 )  into the sum of 
vectors of free motion. Since r is a function on Ao, we can change in the 
last formula T j for T~, so we get that 

n 1 

x ( T n 2 ) - x ( 2 ) =  ~ r(T~2) (3.10) 
j = 0  

Thus, the problem of the statistical properties of the vector 
x ( T n 2 ) -  x(2), when n ~ ~ ,  is just the problem of the limit theorem for the 
vector function of free motion r(2) with respect to the measure-preserving 
map To. 

In the following two sections we shall study some properties of the 
distribution of r(2) with respect to the Liouville measure #o(d2) and of 
the second moment ((r(TJ2), r (2))) .  Remark that because of an infinite 
horizon, the vector of free motion r(2) is unbounded and the important 
question for us is the asymptotics of the tail of the distribution of r(2) with 
respect to the Liouville measure. 

4. D I S T R I B U T I O N  OF THE FREE M O T I O N  V E C T O R  

Denote the distribution of the vector of free motion r(2) with respect 
to the Liouville measure #o by v ~ 

P r o p o s i t i o n  4.1.(2~176 The distribution v ~ is symmetric. 

Proof.  Since x ( S 2 ) =  x(2), then, by (3.4), 

r (ST2)  = x(TST2) - x ( S T 2 )  = x(S2) - x ( S T 2 )  = x(2) - x(T2) = -r()~) 
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but the distribution of r(ST2) coincides with that of r(2), because both S 
and T preserve the measure /~0, hence r().)= -r()~) in distribution, which 
proves Proposition 4.1. 

Let us turn now to the computation of the tail of the distribution 
of r(2). Consider a long segment Ix, y] of free motion, x = x(2)~ ~(2j, 
y=x(T2)eOO~.  By the Corollary to Proposition2.2, there is some 
corridor Cj~ such that (2j and O~ touch Cjk from different sides of Cgk and 

Ix-xgkl ~ 1, l y - x ~ L ~ l  

where xjk, x~ are the touching points of Cjk and O j, ~ ,  respectively. In 
such a case we shall say that the segment [x, y] = [x()~), x(T2)] belongs to 
the corridor Cjk; the notation is [x(2), x(T;t)] ~ Cjk. 

Denote by djk the width of the corridor Cjk (i.e., the distance between 
its boundary lines) and by 

O~jk ~ O)jk 1 e 1 ~ O,)jk 2 e 2 

the unit vector which is parallel to the boundary line of the corridor Cjk. 
Let xjk E O~j n OCjk be the touching point of Oj and Cjk, and njk be the 
vector of the outer normal to ~g2jk at xjk. To choose cojk in a unique way, 
we shall assume that ojk is in the counterclockwise direction from njk 
(see Fig. 2). Let o f  = ___cojk. 

Since by Proposition 2.1 r~i,~/c0g, a is rational or infinite, Cj, touches 
a periodic set of scatterers. Let g2~(~,~. +) be the closest scatterer to @ in the 
direction of co~ which touches the corridor Cg~ from the same side as g2g 
does. Denote by h~ the distance between the touching points of the 
scatterers @ and ~(~,~, • with the corridor C~,. 

Let us compute the asymptoties of the probability 

p f ( R )  = Pr{Ir(2)l >R,  x(2) ~ 892~, [x(2), x(T2)] ~ C~, (r(2), eel)  > 0} 

(4.1) 
when R --* oo. 

t.(1)o- 

v ~ j  i ~ 

'L 
-dj~ / , ~ )  ~ -  

/ 

Fig. 2. A long segment of free motion. 
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Proposition 4.2. For R ~  oQ, 

P~(R)= 4 Zj= I IOOj[ hfk +O(R -s/2) (4.2) 

ProoL Let us consider for the sake of definiteness the asymptotics of 
p~(R). To simplify notations we write d =  djk, h = h~.  Let x(2)e  ~s be a 
point in a small neighborhood of xj. Let us introduce an orthonormal basis 
fl ,  f2 in N2 such that f~ = r and consider a coordinate system (t, v) with 
this basis and with the origin at xjk. We will assume for the sake of definite- 
ness that f2j lies in the half-plane {v/> 0}. Let (z, --djk) be the intersection 
point of the segment [x(2), x(T2)] with the line {v = -dj~} (see Fig. 2). 
Then 

z =  lx(T)~)- x()~)l + O(1)=  Ir().)l + O(1) 

and so, to prove (4.2), it is enough to prove a similar asymptotics for the 
distribution function of z. Let us compute the latter. We have 

z - - t  
t an[ t /+  arctan i f ( t ) ]  (4.3) 

d+f ( t )  

where x(2) = (t, v); v = f ( t )  is the equation of ~?f2j in the vicinity of xjk and 
t/ is the reflection angle (see Fig. 2). After some calculations we get from 
(4.3) that 

El +wf'(t)]dz 
cos t /dr/= {1 + [f'(t)12} L/2 (1 + w2) 3/2 [d+f(t)] 

where 
z - - t  

w 
d+f ( t )  

Hence, the density of probability of the distribution of z with respect to the 
Liouville measure Z-1  cos t~ dt/ds is equal to 

~'~(~) Z ~ 1 + wf'(t) ds dt 
p(z)= ~o(~) {1 + [f'(t)]2} 1/2 (1 + w2) 3/2 [d+f( t ) ]  dt 

where to(z)=min, t, t l(z)=max~t under fixed z (see Fig. 2). Since 
ds/dt= {1 + Ef'(t)]2} '/2, 

p(z)= Z_l ~,,~z~ l + wf'(t) 
~,o(z) (1 + w2) 3/2 [d+f(t)] dt 
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Now, 

Z 
w = ~ + O ( 1 ) ,  to ( z )=O(z- ' ) ,  q(z)=O(z-: /2) ,  f ( t ) = O ( t  2) 

SO 

p ( z ) = Z _ l  I e | ' l ( Z ) [ l + w f ' ( t ) ] d t [ l + O ( z - 1 ) ]  (4.4) 
[ 1 + (z/d) 2 ] 3/2 d ",o(z) 

Furthermore, 

Z 1/2) 
f':(:~ [1 + wf'(t) ] dt = ~lf(tl(z) ) + O(z-  
~ to(z) 

A simple geometrical calculation gives that 

f ( t l ( Z ) )  = hd [1 + O(z-1)] 
Z 

so that 

ft l(z) [1 + wf'(t)] dt = h + O(z -1/2) 
o(z) 

Substituting this formula into (4.4), we get that 

1 hd2 
p(:) = z- 7 [1 + O(z 1/2)] 

Hence 

foo 
p r { z ~ R }  = p(z) dz=Z 1h2dR211_~_O( R 1/2)] 

R 

Proposition 4.2 is proved. 
It is noteworthy that for large R the distribution - d p ~  (R) is localized 

near points of a periodic lattice (by periodic lattice we mean here a locally 
finite periodic set on the line). Indeed, according to the Corollary to 
Proposition 2.2, for large lY-  xl, x is close to xj~ and y is close to xp, the 
touching point of the corridor Cjk and the scatterer f2~, which contains y, 
so [y-xL is close to Lx~--x:kl. Since the scatterers f2/3 form a periodic set 
at the boundary of the corridor, then for large Ix~-xjkl this quantity is 
close to a periodic lattice, so lY-x l  is also close to that lattice. It means 
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that for large R the distribution -dpf~ (R) is localized near the periodic lat- 
tice. As a consequence, the corresponding distribution density has 6-shaped 
peaks near the points of that lattice, so it does not have the regular 
powerlike asymptotics 

dpy~(R)_const (__~) 
--  d R  ~ + o  

in spite of the fact that the distribution function pj~ (R) obeys (4.2). 
Denote 

and consider the strips 

around the lines 

d =  m a x  m a x  djk 
I<~j<~N l<~k~N] 

Sjk= {x~ ~2ldist(x, bk) < d} 

which go in the corridor directions oj~. Let 

x 
s :U  

j = l  k = l  

Then by the Corollary of Proposition 4.2, r(2) ~ S if R = jr(2)[ is sufficiently 
large. This means that the support of the distribution v~ of r(2) resem- 
bles an "octopus," with 2M legs stretched out in the corridor directions 
tog,  where M is the total number of different corridor directions. 

Proposition 4.3. <lr(2)l ) < ~ ,  ( r (2 ) )  =0,  (ir(2)t 2) = ~ .  More- 
over, if CR(x)= Ixl 2 for txl < R ,  CR(x)=0 for Ixl ~>R, then 

(r = Co in R + O(1) (4.5) 

when R ~ Go. 

Remark. This means that the variance of r(2) diverges logarithmi- 
cally. 

Proof. We have 

( r ( 2 ) )  = f rv~ = 0 
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because v ~ is symmetric. Next, for large R o > 0, 

f trl v~ ~ RE-dp~(R)] 
[ r l > R 0  j = l  k = l  _ 0 

+2 + + '--- ~ Z Ropfi(Ro)+ pf~(R) dR <oo 
j = l  k = l  _ 0 

because of the asymptotics (4.2). Similarly, for R1 ~ 0% 

fR Irl2 v~ 
l > l r l > R 0  

= Z R2[ -dpj;(R)] 
j = l  k = l  _ o 

E ,2 + 2 + + = [RoPjk(Ro)- R1Pjk (RI)]  + 2 Rp~(R) dR 
j = l  k = l  _ 0 

= const In R1 + O(1) 

which proves (4.5). Proposition 4.3 is proved. 

In the next theorem we calculate the singularity at the origin of the 
characteristic function Z(t) of the free motion vector r(2). 

Theorem 4.4. For t ~ 0 ,  teN2:  

z(t) = (exp[i(t ,  r(2))] ) 

=exp  ~ c%(t,O~jk)21nl(t, cojk)l+(At, t)+O(ltl 9/4) 
j l k = l  

where 
1 

c % -  4 E L  1 i~?sc2,l hjk dye, 

and (At, t) is a quadratic form. 

ProoL We have 

z(t) = (exp[i( t ,  r(2))] ) 

= ~ exp[i(t, r)]  v~ 
J 

hjk = hj~ + hjk 

= I expEi(t, r ) ]  v~ + f expEi(t, r ) ]  v~ 
Ir[ ~ R Ir[ > R 

= ;~o(t; R) + )~(t; R) 
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The function z0(t; R) is analytic for any fixed R. Compute the singularity 
of z~(t; R) at the origin. 

As we mentioned above, supp v~ outside of a circle {]rt > R }  for 
large R consists of several components, "octopus legs," corresponding to 
different basic corridors. It enables us to represent Zl(t; R) as 

U N: 
zl(t; R ) =  Z ~ Z Z~(t; R) (4.6) 

j = l  k = l  • 

where 

;g~ (t; R)=fs[k(R) exp[i(t, r)]  v~ (dr; R) (4.7) 

where 

and 

where 

+ S~(R) = {r E Sjkl •  cojk)> 0, ]r[ > R }  

+(A;R)=Pr{r(2)EA, 2e  V~(R)} Vjk 

V~ (R) = {(s, ~/)l for A. = (j, s, q): 

Ir(2)l > R, xO) ~ 8~ i, Ix(2), x(TYC)] e Cjk, ~ (r(~), ~ojk) > 0} 

Remark that (4.6) is a sum over the basic corridors and the + directions 
of those corridors. 

Let us compute the singularity of z~(t;  R) when t ~ 0 .  Let r = ( x ,  y), 
where x, ~ are coordinates in the orthonormal basis fl = (ojk, f2 with the 
origin at xjk = 8(2jc~ 8Cjk. Denote 

e(x, Y)=]x   (dxdy) 

For the sake of brevity we do not indicate the dependence of P(x, y) 
on j, k. By (4.7) 

+ ' fsj  + (dr) Zik (t, R) = exp[i(t, r]  vjk 
�9 ( R )  

fsj~ d2P(x' y) dx = exp[i(ux + vy)] dx dy dy 
�9 ( R )  
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Consider the domain 

U =  {(x, y ) e  ~2 I l y - d j k  [ < Ixl--0.99} 

We state that 

Bleher 

SO 

Similarly, 

(if R is large enough). We use here again that any long segment of free 
motion lies almost entirely in a basic corridor. A simple geometrical 
calculation shows that the condition that Ix(2), x(T2)] does not intersect 
the closest scatterer (2~ implies that 

where 

[y(2)l < const- Ir(2)[--1 

x (2 )=  (x(2), y(2)), r ( 2 ) = x ( T 2 ) - x ( 2 )  

l y(T)~) - djkl < const. Ir(2)1-1 

where 

ly(T2)-y(2)-djkL <const-lr(A.)l 1 

which implies (4.8). Remark that (4.8) means that the support of v~(. ;  R) 
lies in a narrow region around the line y = djk. 

By (4.8) for x > R, 

P(x, y ) = 0  if y>djk@X 0.99 

P(x, y) = Po(x) if y < djk - x -~ 

Po(x) = Pr(x(2)  r ~3t'2j, Ix(2), x(T2)] E Cjk, (r(2), •jk) > x} 

Remark that, by Proposition 4.2 for x--+ c~, 

+ 
Po(x)--~-~- O(x 5/2) (4 .9 )  

Define in the half-plane {(x, y)lx >~ R} an auxiliary function Q(x, y) such 
that 

0 if y>~djk 
Q(x, y)= Po(x) if y <  djk (4.10) 

supp v•( .; R) c U (4.8) 
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and decompose ~ ( t ;  R) into the sum of three terms, 

Zj~ (t; R) = c~(t; R) +/~(t; R) + y(t; R) 

where 

a2e(x' Y) dx dy c~(t;R)= f; exp[i(ux+vy)] dxdy 
{x~>R} 

dz(P(x, y ) -  Q(x, y)) 
/3(t ;R)= ~f exp[i(ux+vy)] dxdy 

{x~>R} 

(4.11) 

dxdy 
d2P(x, 

7(t; R) = ff  exp[i(ux + vy)] dx dy y) dx dy 
s~(n)\{x>~ R} 

Notice that since S~(R)\{x>>.R} is compact, then 7(t; R) is analytic in t. 
Let us compute singularities of c~(t; R) and /?(t; R) at t = 0. We have by 
(4.10) that 

~(t; R) = -f~exp[i(ux + v d j k ) ] ~ d x  

= -exp[i(uR + vdjk)] Po(x) + (iu) exp[i(ux + vdjk)] Po(x) dx 

In addition, formula (4.9) implies that 

fR exp(iux) Po(x) dx= ;R exp(iux) --s c~jk + O(x- 5/2) dx 

Since 
dx 

exp(iux) ~ = -iu In ful + r(u) 

where the function r(u) is analytic at u = 0, we get that 

~(t; R) = c~ u 2 In [ul + co(t; R) + ~l(t; R) 

= c~ (t, e)jk) 2 In [(t, ~jk)[ + c%(t; R) + ~l(t; R) (4.12) 

where the function c%(t; R) is analytic at t = 0 and [el(t; R)[ ~< const. It[ 5/2. 
Next, differentiating by parts twice, we get that 

fl(t; R) = - (uv) ff (x>~ R~ exp[ i(ux + vy) ] 

x [P(x, y) -- Q(x, y)]  dx dy + flo(t; R) 
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where the function rio(t; R) is analytic at t = 0. For the sake of brevity, let 
us write 

b(t; R) = f f  exp[i(ux + vy)] [P(x, y) - Q(x, y)]  dx dy 
{x~R} 

so that 

ri(t; R) = -uvb(t; R) + rio(t; R) 

Then 

b(t; R ) -  b(0; R) = f l  {exp[i(ux + vy)3 - 1 } [P(x, y) - Q(x, y)]  dx dy 
{x>_- R} 

Let us decompose the last integral into the sum of two integrals, one 
over the domain {It1-1/2>/x>/R} and the second over the domain 
{x>  Itl 1/2}. In the first domain 

lexp[i(ux + vy)] - 11 ~ 2 Itl 1/2 

SO 

P o  

t t  {exp[i(ux + vy)] - 1 } [P(x, y) - Q(x, y)]  dx dy 
{[t l - l /2  ~> x ~> R} 

~<2 [tl 1/2 f f  IP(x, y ) - Q(x, y)l dx dy 
{Itl 1/2>~x>~R} 

Itl l,,z 
dx 

~<C[t11/2 ~ 7 ~<C~ 
R 

The integral over the second domain is estimated as follows: 

f (  {expEi(ux+vy)] - 1)] - 1 }[P(x, y ) - Q ( x ,  y)] dxdy  
{x>~lt  I 1/2} 

GO 

<~C f ~<~Cl t l  1/2 
Itl 1/2 

Thus we get the estimate 

Ib(t; R ) -  b(O; R)I ~ C~ Itl ~/2 
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This implies that 

where 

flCt; R)  = fllCt; R)  + fl2(t; R)  (4.13) 

1/31(t; R)I ~ C1 Itt 5/2 

and fl2(t; R) is analytic at i = 0. 
Summarizing relations (4.10)-(4.14), we get that 

z~(t;  R) = ~ ( t ,  %,)2 in ICt, ~ojk)l + r R ) +  q(t; R) 

where r  satisfies the estimate ]~(t;R)] ~<const. It] s/2 and ~/(t;R) is 
analytic at t = 0 .  A similar formula is valid for z~(t;  R). Summing up all 
these formulas in j, k, and + ,  we get that 

u Nj 
z(t) = ~ ~ C~jk(t, ~oj~)21n t(t, o~jk)l + 0 ( t ) + ~ ( t )  

j = l  k = l  

where 
10(t)l ~ const. Itl 5/2 

and ~(t) is analytic at t = 0. 
Proposition 4.1 implies that 

at-7 (o) = ~ (o) = o 

In addition, )~(0)= 1, so 

~(0)  = 1, 

U 
In z ( t )=  Z Z 

j = l  k = l  

Hence 

(o)  = ~ CO) = o 

~jk(t, %k) 2 In I(t, %k)l + 0o(t) + fro(t) 

100(t)j ~< const, rtl 5/2 

where 

and ~o(t) is analytic at t = 0 and 

~o(O) = ~77 (o )  = CO) = o 

C4.14) 

822/66/'1-2-22 
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This implies that 

and so 

G0(t) = (At, t) + o(Itl ~) 

N 
in Z(t) = ~ ~ ~j~(t, %k)= In I(t, r + (At, t ) +  O(Itl 5/2) 

j = l  k = l  

Theorem 4.4 is proved. 

5. ESTIMATES OF CORRELATIONS 

In the previous section we have shown that ( I r ( } ~ ) 1 2 )  = o(3. Now we 
will show that 

(Ir(2)l Ir(T~2)L) < oe (5.1) 

for any n # 0. 
Denote by v~(dr 1 dr2) the joint distribution of vectors r(2), r(Tn2) 

with respect to the Liouville measure #o(d)0. 

Proposition 5.1. The distribution vn(drl dr2) is invariant with 
respect to the transformation P: (rl,  r2) ~ - ( r2 ,  rl). 

P r o o f .  In this proof we will denote by (rlbr2) the pair of vectors 
rl, r 2 and not their scalar product. In addition, x = y denotes the equality 
of distributions of random variables x, y. We have 

(r(2), r(Tn2)) __a (r(T n 1S2) ,  r(T ~$2)) 

because both T and S preserve #o. Next, 

T - ~ -  ~ = ( S T S ) "  + 1 = S T  ~ + 1 S 

and 
r ( S T 2 )  a= - r ( 2 )  

SO 

(r(T -n '$2), r ( r  ' $ 2 ) ) =  (r(Sr~+12), r(ST2)) __a _(r(T~2)  ' r(2)) 

SO 

(r(2), r(Tn2)) ~ - (r(Tn2), r(2)) 

The proposition is proved. 
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C o r o l l a r y .  (Ir(2)[, Ir(T'2)]) s (Ir(r"2)l, Ir(2)t). 

Now we prove (5.1) for n = l .  To that end, we calculate the 
asymptotics of the tail of the distribution v~(dr 1, r2) of vectors r(2), r(T2). 
Assume that Ir(~.)L, [r(T)01 are big enough. Then the vector Ix(2), x(T2)] 
belongs to some corridor C/k which means that from x(2) to x(T2) the par- 
ticle moves long inside Cjk almost parallel or antiparallel to its direction 
o~jk. This implies that in the collision at x(T2) the particle changes very 
slightly the direction of its velocity and so the next segment of free motion 
Ix(T2), x(T22)] also lies almost entirely in the corridor Cj~. The main 
observation is that in a typical situation, however, 

ix(T22) - x(T2)l ~ const �9 [Ix(T2) - x(2)l ~/2] (5.2) 

(see also refs. 24 and 29). Since the function Pr{Lr()0)l >jR} decreases as 
const-R 2 when R ~ 0% (5.2) implies that (]r(,~)] Ir(T2)] ) is finite. Unfor- 
tunately, the constant in (5.2) is not uniform in 2, so we actually need more 
refined arguments. In what follows we estimate the tail of the distribution 
v1(drl, dr2). 

Consider for positive RI, A~, R2, A2 the region in the phase space 

Vfk(R1, A1,82, A2) 

= {2 e A01x()~) e 0f2j, Ix(2), x(T2)] e Cjk, 

(r()~), 0)jk ) > 0, R 1 < ]r()~)] -< R 1 + A 1 , R2 < Ir(T).)l < R2 + A2} 

(5.3) 

We will estimate the probability 

+ R  f Pj~( 1, AI, R2, z~2)= ]Ao(d,~) 
Vffk ( R l  , A I , g 2 ,  A2) 

of such types of regions. Consider a big integer number no such that any 
segment of free motion of the length greater than (no) 2 belongs to some 
corridor and put for m, n i> no, 

+ pf~(m , 2m+ 1, n 2, 2n + 1) qj~(m, n)= + 2 

Proposition 5.2. The numbers q~(m,n)>~O have the following 
properties: 

(i) 
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(ii) 3C, Co > 0 such that 

= 0  if n<C.,/-m 

q~(rn, n) -<C R,~+ R~ 
--~ o ~ AmA~ if C x//-m <~ n <~ m 

(R,.R.) 

where Rm = m 2, Am = 2rn + 1. 

ProoL (i) Follows from the Corollary to Proposition 5.1. (ii) Let us 
introduce some notations. Let x(2) s 0s [x(2), x(T2)] e Cjk, x(T2) e ~3s 
and x j=  0s Cjk, x7=0s Cjk. Consider the coordinate system (x, y) 
with the orthonormal basis fx = Oljk, f2 and with the origin at the point x~, 
so that x is the coordinate along the corridor Cik, y is the orthogonal one, 
and x r = ( 0 ,  0). For the sake of definiteness we will assume that the 
scatterer f2~ lies in the upper half-plane { y >/0 } and the x coordinate of the 
vector r (2 )=  x ( T 2 ) -  x(2) i s  positive. 

Consider the point z(2) = (z(2), 0) of the intersection of the segment 
Ix(2), x(T2)] with the x axis. It is clear that 

Iz(2)[ ~< h (5.4) 

where h is the period of the scatterer lattice in the direction o~jk, so [z(2)[ 
is uniformly bounded. The same calculations as we used in the proof of 
Proposition 4.2 above lead to the following asymptotic formula for the den- 
sity p(z) of the distribution of z(2) with respect to the Liouville measure 
#o(d2): 

p( z ) -  R3 +0(R-7/2), R-+oo, Iz(2)[~<h (5.5) 

where R = l x ~ - x j [ .  Remark that ] x - y l = R + O ( 1 )  for any xeOf2j, 
y e Of 2~, so (5.5) remains valid if we change R for i x -  y], where x, y are 
arbitrary points at 0s 0~2~, respectively. 

Let us estimate now R'= [r(T2)] = Ix(T~-,~)-x(T2)l. Denote by ~, ( '  
the angles (without sign) between the x axis and the vectors r(2), r(T2), 
respectively. Consider the line 1 which is parallel to Ix(2), x(T2)] and is 
tangent to s from below. Let v = (v, 0) be the intersection point of l and 
the x axis. Then direct geometrical calculations give the formula 

i ~  q 1/2 ~ '=  --~+ 2 (v--z)J {1 + O([~(v -- z)]1/2)} 
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where p is the curvature radius of c~f27 at x~. Simple further calculations 
lead to the asymptotic formula 

R 
R ' =  + O(1) (5.6) 

- 1 + 211 - (2z/pd) R] ~/2 

Let us discuss this formula. One can see that in the typical case - z  is of 
the order of 1, and in that case R'  is of the order of x/-R. However, for 
small z of the order of R 1, R' is of the order of R. In particular, 
R'=R+ O(1) for z = 0 ,  which corresponds to the reflection at x 7. We are 
interested in the case when R'~< R + const,  x/R, so we may assume that 

Z = Z()~) ~ R -4/3 

Due to (5.6), the condition (5.4) implies the inequality 

R'/> const.  ~ (5.7) 

Assume now that Rm <~ R <<. Rm + Am, Rm - -  m 2, A m  = 2m + 1. Consider such 
z in (5.6) that Rn ~< R' ~< Rn + An, n ~< m. Direct calculations based on (5.6) 
show that the length of the segment of those z's is equal to 

Az=Rm+R~4dAn[I +O(n l)] 
(Ro) + 

so according to (5.5) the probability of this segment does not exceed 

Rm + -Rn 
const (RmRn) ~ An 

This gives us the estimate of the probability of the set 
Vf(Rm, zl,,,, Rn, An)c~ {x(T2)e~?Q~}. Summing up over all admissible 7, 
we get the estimate 

R m + Rn 
qf~(m, n) = Pr{ V~(Rm, Am, Rn, An)} ~< const - (RmR,) ~ AnA,,+ 

The inequality (5.7) implies that q~(m, n ) = 0  if n < c o n s t - x f m .  Proposi- 
tion 5.2 is proved. 

Proposi t ion 5.3. <lr(~l I r (T~) l )  < ~ .  

Proof. Wri te  

V(R)= {2~Ao I Ir(~)l ~>g, [r(T~)t ~>R} 
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Since 

f~ Ir(,t)l Ir(T2)l #o(d2)~2R f~ Ir(,01 #o(d2)~ZR(lr(2)l>< oo 
o \ V ( R )  O\V(R)  

it is enough to estimate 

~v(R) Ir(2)l Ir(T2)l ,uo(d2) 

for some R > 0. Moreover, since for large R, 

U Nj 

V (R)  j = l  k = l  + Vfk(R , dco, R, oo) 

+ where the sets V~(R1, LJ1, R2, A2) were defined in (5.3), it is enough to 
estimate 

Ir(;o)L Ir(T2)l #o(d2) 
V ~ ( R ,  o o , R , ~ )  

Consider a large integer number no such that any segment of free motion 
of the length greater than (n0) 2 belongs to some corridor. Then we have 

It(2)[ Ir(T~)l ~o(d~) 
* J  

v ~ ( ( n 0 )  2, ~ , (n0 )2 ,  oo) 

:kk f 
m ~ n o  n - - n o  Vj~(rn2,2m + 1 , n 2 , 2 n +  1) 

~< k ~ ( m + l ) Z ( n + l )  2 ; 
m -- no n = n o Vj~ (m 2, 2m + 1, n 2, 2n + 1 ) 

= k ~ (m+l)2(n+l)2qfk(m,n) 
m = no ;'t--no 

By Proposition 5.2 

k (m+l)2(n+l)2q~(m,n) 
r e = n o  n - - n o  

<~ ~ ~ ( m + l ) 2 ( n + l ) 2 C o - -  
r e = n o  n = EC x / m ]  

Ir(~)l Ir(T2)l/~o(d2) 

rn 2 + n 2 
FH6H 6 

<~C~ k m-~ k -~<~C2 k 
m = no n =  [- C . , / ~  ] r e = n o  

~o(d2) 

(2m + 1)(2n + 1 ) 

m 2 < 0 0  

Proposition 5.3 is proved. 
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Now we turn to the proof of the relation (5.1) for any n >/1. Consider 
a trajectory of the particle in a corridor Cj,. Let 

x(2)Ec~Y2j, x(T2)ec~t2~, x(Ti2)at?g?~2 ..... x(Tn+12)e&2~n.~ 

where all the scatterers t2j, f2~,,..., t?Tn+l touch the corridor Cjk. Introduce 
a coordinate system with the orthonormal basis fl = ajk, t"2 and with the 
origin at xjk = &2j ~ Cjk. For the sake of definiteness we will assume that 
the particle moves to the right, so that if x(Tm2) = (x(Tm2), y(Tm2)), then 
x ( T m 2 ) > x ( T  m 12) for m =  1 ..... n. In addition, we will assume that the 
even scatterers #(2j _= 0f2~0, ~?g?~, ~?Q~4 .... lie in the lower half-plane { y ~< 0 }, 
while the odd ones t3f271, 0s lie in the upper half-plane {y>~djk }. In 
principle it is possible that two subsequent scatterers t?t?~m_l, ~?t2~ lie on 
the same side of the corridor Cjk (see Fig. 3). We shall consider this case 
later. 

Denote by Zm(2 ) = (Zm(2), Um(2)) the intersection point of the segment 
[x(T~-12),  x(Tm2)] with c?Cjk, which lies near the point x(T~2). It is 
noteworthy that Um(2 ) = 0 for even m and = djk for odd m. Let us fix the 
initial point x(2) and consider small perturbations of the velocity vector at 
the initial moment. In other words, we consider 2 = (j, s, q), where j, s are 
fixed and tl is varied. We want to study the dependence of Zm(2 ) on  q. Since 
j, s are fixed, we redenote Zm(s ) by Zm(q). Write "~m = IX(Tm2) --X( Tm 12)1 
and call Pm the curvature radius of ~'~ym at x(Tm2) .  

P r o p o s i t i o n  5.4. We have 

d•m (i) -j~- > 0, m~>l 

dz m 4(77m) 3 
( i i )  - -  - 

dzm 1 Pm--l('Cm+'rm--1) 

X [ 1 _{_ O(( , , [ ,m)1 _j_ (.6.m_ 1 ) i ) ] ,  m>~2 

C) 

Fig. 3. Subsequent reflections from neighboring scatterers. 
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Remark. Simple geometrical considerations show that Tm 1 4  
2 const.rm, so that point (ii) implies that dZm/dz m l>~const .%,  which 

means that the map Zm - 1 ~ Zm is strongly expanding. 

Proof. Denote by ffm=~m(t/) the angle without sign between 
r ( r "  12)=x( rm2)- -x(Tm-12)  and %k- We will prove (i), (ii) by induc- 
tion. We have 

7~ 
~ 1 = ~ - ~ - ~  

where ~ is the angle between the tangent line to ~(2j at x(2) and %k, and 

d - y  
= t a n  ~1 (5.8)  

Z 1 - - X  

where x(2) = (x, y), d = djk. So 

d~l - - =  -1 (5.9) 
dn 

and 

[ (Zl_X)2] dz1 d21 - ( d -  y) 1 + (5.10) 
dq d~l \ d - y /  J 

Let us assume now that 

d•m - 1 dzm 1 
- - < 0 ,  > 0  (5.11) 

d~ d~ 

for some m >~ 2 and prove similar inequalities for d~,,,/d~l, dzm/&/. For the 
sake of definiteness we will assume that m is even. 

Consider a small perturbation (z, ~) of the pair (Zm 1, ~m 1) and a 
trajectory starting at the point (z, d) with the velocity v = (cos ~, sin ~). Let 
v=(cos  i f ' , - s i n  ~') be the velocity in this trajectory after the reflection 
from f2~m_l and let (z', 0) be the intersection point of the trajectory with the 
x axis after that reflection. We have a map 

am 1: (z, ~)-----)(z t, ~f) 

which is defined in a neighborhood of the point (Z m 1, ~m i )" By construc- 
tion, 

a m _ l :  ( Z m _ l , ~ m _ l ) - - + ( z m , ~ m )  
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Direct calculations give that 

8z' s in(  sin f 2t' 
+ (5.12) 

Cz s in( '  s in ( '  pcos~o 

where t' is the length of the segment between the reflection point at 0s 
and z ' =  (z', 0), p is the curvature radius of 8f27,,,_1 at the reflection point, 
and ~o is the angle of the reflection. Similarly, 

8z' t +  t' 2t t '  

0( s in( '  p s i n f ' c o s c p  

8(' 2 sin ( 

8z p cos (p 

8f '  2t 
- - = 1 + - -  
8~ p cos ~o 

(5.13) 

where t is the length of the segment between the point (z, d) and the reflec- 
tion point at 8C2~,,_~. We have 

dz m 8z' dzm -- 1 8Z' d~m - 1 
N -- Sz (Zm- l, l ) - - g - -  + 7 (  (zm 1, I)-W-. 

Due to (5.12), (5.13), 

8z' 8z' 
8-'~ (Zm-l'~rn 1 ) > 0 '  8~ ----(Zrn 1, ~m 1) > 0  

so in view of (5.11) 

dzm >o 
el,7 

Similarly, 

dzm 1 8~" d r , , - 1  d~=a~--(~.,d~ ~ ~'~ ~)--2~ +T( (~m ' '~  ' ) ~ < ~  

Part (i) is proved. 
By (5.11) d~m 1/dzm i<0. Equations (5.12), (5.13) imply the recur- 

sive "continued fraction" formula (2~ 

d(m sin (m 
dz ,. 1 

tm + 2 1 
F 

sin ~,._ 1 Pm 1 COS q m - 1  t t 
m-1  

d~m 1/dzm 1 
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where 

t m = t x ( T  m I~L) - Zm(2)t , 

and r/m 1 is the reflection 
sin ( m  = O(l/tm) we get that 

t~ , = l x ( Z  m 12)-zm_,(2)l  

angle at the point x ( T  m 12). 

Next, 

d•m 
dzm i 

d•m 1 OZt(Zmoz l'~m--l)-~-~ (Zrrt-I ' ~m-l) dZm~l 

By (5.12) 

~Z' 
a---f(Zm 1,~m 1) 

sin (m-1 sin ( m  1 2tm - -  + - -  

s in  ~m s in  ~m Pm 1 COS /~m 1 

R e m a r k  t h a t  2r/m 1 -}- ffm = ~, SO 

and 

COS ~ m  1 = sin 
~m 1 -~- ffm 

- -  1) sin ~m- 1 sin~m 1 2tin 
~z sin~m sin#m Pm_lSin~( m l+#m) 

In addition, tm = Ix(T m 12) - -  zm(2 ) ]  ---- %m + O ( 1 )  and 

1 
s i n  ~ m  ---- - -  -]- O 

,.L- m 

SO 

2(~'m) 2 
aZ'(zm 1, C~ 1 ) -  [ l + O ( r s  1 + r m l ) ]  
~ Pm--lTm 1(~s 1 + ~;1)/2 1 

_ 4( ' rm) 3 [ l  + O(z.;1_ 1 + ~.m 1)] 
Pro- 1(~m i + ~m) 

By (5.13) 

' 2tmt'm 1 ~Z' tm +tm , 
O~-~(Zm 1, ~m--1)-- sin~m + l(~m_ Pm 1sin ~m sin 1 "~ ~m) 

Since 

(5.14) 

(5.15) 

(5.16) 
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Since t "  l = l x ( T  m ~)~)-z,~ ~(2)1 =O(1),  we get that 

1, ( , ) ' )  &'(=~_ ~ = o  t~ + 
a~ t, tm 1 

so in view of (5.14) 

-~(Zm_l,~m_ 1 ~ ~ C  - 

3 
=C tm 

t,,_~(t m l+tm) 

<~ Co 

Hence, due to (5.15), (5.16) we get that 

dzm 4(rm) 3 

)zm_l Pm-l(r~-~ +z~) 

3 
r~ r2L, 

"( m _ l "-~- 72 m 

[ I  + O(Zm1_ l +'Em 1 ] 

Proposition 5.4 is proved. 
Consider now a trajectory of the particle in a corridor Cjk, 

x(2)~0f2j, x(T2)~0f2~I , x(T22)60(2;2,..., x(Tn+12)60s 

where all the scatterers s f2~1,... , f2~,+~ touch the corridor Cjk and the 
reflections represented in Fig. 3 are admitted. 

Proposition 5.5. We have 

d•m (i) -~q >0, m>~l 

dzm 4('Cm) 3 
(ii) 

d Z m - 1  P m  l(TJm-~-72m 1) 

X [" I - I "  O(("Cm)1-~-('L'm_ i ) i ) I  , m >>. 2 

if the scatterers f2~m 2, g2~,, lie on another side from the corridor Cik than 
f2~m_~ does. 

dzm 4Zm_l(~m) 2 
(iii) 

dzm-2 D m - - l P m  2"Cm 2 COS qm 2 COS qm 1 

x [ l  +O((Zm)--* +(Zm_2)--i)], m>~3 
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if the scatterers ~Tm-3' ff27rn lie on another side from the corridor Cj~ than 

~Tm 2' ~r 1 do. 

Proof  of this proposition goes similarly to the proof  of Proposition 5.4 
and so we omit it. Let us turn now to the proof of the main result of the 
present section. 

Theorem 5.6. For any n >  1, ([r(2)l Ir(Tn2)l) < oo. 

Proof. Denote 

V(R)= {2eAot Ir(2)l ~>e, Ir(Tn2)l > R }  

Since 

fAo\V(R) Ir(2)l Ir(T~2)l #o(d2)~ 2R fAo\V(R)Ir(~)l ~0(dA) 

~< 2R(lr(2)l ) < 

it is enough to estimate 

fw~R) lr(2)l Ir(T~)l/~o(d,~) 

for some R > 0. If R is big enough and fr(2)] > R, then the whole trajectory 
x(2), x(T2) ..... x(Tn+12) belongs to a corridor Cj~ in the sense that 

X(2) E ~ff2j, x(T2) E ~3~c2yl, x ( T 2 2 )  E ~3~c2~. 2 ..... 

x(T n+ 12) c 8(27,+ ~ (5.17) 

where the scatterers (2j, f2~ ..... f2y,+l touch the corridor Cjk. Denote by 
V~(R) the set of 2 e V(R) for which the trajectory x(2), x(T2),..., x(T n+ 12) 
belongs to the corridor Cjk and goes in the direction ---~jk. We will 
estimate 

fv~ Ir().)] Ir(T'2)l Sto(d2) 

(we chose the sign + for the sake of definiteness). Let us fix scatterers f2~1, 
f2~2,..., ~,+~ and denote by V~(R; 71,72 ..... 7,+1) the set of 2~ V~(R) for 
which (5.17) holds. Actually the set V~(R; 71, 72 ..... 7n+1) can be empty 
and we will assume that this is not the case. We will also assume at first 
that the even scatterers 8f2j = 80~0, 80~2, ~f2~4 ..... lie in the lower half-plane 
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{y~<0}, while the odd 
{ y ~> djk }. Accordingly, we write 

(o) { r =  , } l n ~ 0 - n j ,  o>,~ ..... ={y~<0}; G~ = {7,, 72 ..... 7,+ 

Qy,, (2~3,..., c { y ~> djk }; 

32~Ao:  X(Tmj~)ESff27m , m = 0 ,  1 ..... n +  1} 

Let us estimate 

347 

ones ~s ~?(2~,..., lie in the upper half-plane 

f Ir()~)l Ir(Z')~)l #o(d~) 
v~ ( R ; ~ ,  ~2,..., ~,, + 1) 

for {7~ ..... 7 , ,+ , }  ,~m) E u~ . Let 

tm = ] X T m + l  - -  X T m l ,  m = 0 , . . . ,  n 

where 

XTm = ~ T m  (~ CJ k'  m = 0  ..... n + l  

Since x(Tm)~)~ c~(27m , we have that  

[r(ZmA)l : tm "4- 0(1), m : 0 , . . . ,  n, R ~ 

f Ir(;~)l Ir(Z~A)l #o(d;t) 
v~  ( R ; ~ ,  72,..-,A/,, + i) 

P 
: tot~ | #o(d2)[1 + o(1)] 

V~k (R;TI, Y2,---, 7n+ 1) 

= t o t ,  P r { V ] ~ ( R ; 7 , , 7 2 , . . . , 7 , + ~ ) } [ l  + o ( 1 ) ]  (5.18) 

To estimate Pr{ + �9 V]k(R,  71, T2 ..... 7,+1)}, we fix in addition some point 
x ~ f 2 j  with a natural  coordinate s, which lies near the point xj~= 
Of2j c~ Cjk, and consider the set 

A s = {t/I)o = (j,  s, t l )~ Vj+(R; 71,72 ..... 7 ,+ , )}  

so that  

SO 

Pr{ Vj~(R; 71, 72,..., 7~+I)} = Z-I f ds f~ cost/dr/  
s 
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where 

N 

Z = 2  Z la•l  
j =  1 

For the sake of brevity we do not indicate the dependence of A s on j, k, 
R, 71, 72,.--,~+1. We want to estimate the measure of the set A s 
with respect to the measure cos t/dr/. Consider the intersection point 
zn+ l(t/) = (zn+ l(t/), u,+ l(t/)) of the segment [x(Tn2), x(T "+ 12] with t?Cj~, 
which lies near the point x(T"+12). Let 

~n+1)= {z.+1(17)lrl~As} 

Denote by A~n+a) I the diameter of the set A[# +1). It is clear that 

( n +  1) I~s I~ <h 

where h is the period of the scatterer lattice along myk. Consider similar sets 
A~ m) for all in ~< n + 1. By point (ii) of Proposition 5.4 we have the recursive 
estimate 

[A~m~l<~C tm+t~ ~ IA<m+, I 
(tm)~ 

SO 

I'm__+ tm i 1 IA~')l<.h ~ c (tm) 3 ] 
m = l  

(5.19) 

By (5.8), (5.10) we have that 

_ _  [ (Zl-X']= l 1 dzl - ( d - y )  1+ 
cos tl dtl \ d - y /  J sin(e + ~1) 

( ~Cl) 2 
= ( d -  y) 

sin(c~ + ~1) 

where d=djk, x(2)=  (x, y), and tan e =f}(x) ,  where y = f j ( x )  is the equa- 
tion of ~?Oj (we assume that g2j lies in the lower half-plane {y~<0}). In 
addition, 

d - y  
0 < sin(c~ + (~) = sin c~ cos  (1 + COS O~ sin (~ ~< sin ~ + - -  

"Cl 
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a n d  "c 1 = I x ( T J . )  - -  x(2)l = to + o(1 ). Hence 

fas c~176176176 f~ dz, 

= const �9 [sin ~ + ( to)- l ] ( to)  -2 !A~I)I 

Remark that the condition that the segment Ix(2), x(T)~)] 
intersect the scatterer next to s implies that 

Isl ~< const. ~ o  

so we get the inequality 

Pr{ + �9 v;~ (R, ~,, ~2,..., ~,+,)} 

= z - '  fa.f~ cos , , ,  
s 

~< const ~ ds[sin~+(to)-l](to)-21 (1) �9 As  I 

{ is[ ~< cons t  x/~00} 
.)  

Since ]sin ~[ ~ const �9 Isl, we come to the estimate 

Pr{ V+(R; ?'1, 72,.., 7n+ ~)} ~< const- (to) -3 max IA~I) I j k  
,7 

so in view of (5.19) we get that 

Pr{Vj~(R;vl ,72, . . . ,7~+,)}~<const ' ( to)  3 f i  IC tm+tm ~] 
m = l  ( / m )  3 

where 

tin= IXwm--Xw~ 1] 

Due to (5.18), this implies that 

does not 

Ir()~)l Ir(TnA)t #o(d2) 
Vj+ ( R; y1, 72 ,..., Tn ~1 

t,.+ tm ,] 
~<const-(to) 2t~ f l  C (tm)3 J (5.20) 

m = l  

The condition that the segments Ix(Tin-i)0,  x (T"2) ] ,  ix(Tin)0, 
x(Tm+lfi)] do not intersect right and left of ~2~ scatterers along the 
corridor Cjk implies that 

Cl(tm) 2 >/t,,, +, >~ C2 ~ (5.21) 
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Let us enumerate all the scatterers f2~ touching the corridor Cj~ in the 
following way. The enumerat ion is a one-to-one map i: {Q~} --* 2 which is 
determined uniquely by the properties: 

(i) i(s > i((2;) if x~ > x~, or x~ = x / ,  y~ > y / ,  where 
(x~, y~) = x~ = ~Q~ c~ 8Cjk (monotonicity).  

(ii) i(Qfl = 0 (normalization). 

One can see that  ~C3 > C4 > 0 such that 

C 3 Ii(g2v) - frO./)[ >i [x~ - x~,[ >i C 4 Ii(Q>,) - i(Oy,)l (5.22) 

According to this new enumeration,  we have from (5.20), (5.22) that 

f [r(2)[ [r(T"2)[ i~o(d)o) 
V~k(R;yl ,?2, . . . ,Yn+I)  

[ i,~+im_,~ 
~< const . ( io)  -2i~ [~[ C o (G)3 j (5.23) 

m = l  

where im = i(t2~,,+ 1) -- i(f2~), m = 0,..., n. Hence 

f Ir(2)l Ir(T~2)l/~o(d2) 
{ Y I ' " " ? n + I } E G ~  O) F'~ (R; y/, 72,_., yn + 1) 

[ im+im--l~ const. E Co j 
I n m = l  

where in view of (5.21), (5.22) the latter sum is taken over the set 

I n =  {(io, il . . . . .  i,)l i0, io>~R; C5(irn-x)z>/im 
>~ C6(i,,, j)1/2, m = 1,..., n} 

where C5 = C1 C~/C4, C6 = C2 ~4/C3.  Write 

& = ~  (io) -2 i~ Co 
r. m ~ l  ( G )  3 

Since 
[csiZ,-~3 +1 in+i~_ 1 

Co .-"---T~ 
in = [ C6(i~_1)1/2 ] 1 n 

< C o ( C  6 + 1 ) ( i  n _ 1) 1/2 ~ i ._  

we get that S,  ~< S~_ ~. So S, ~< $1 < oe. Thus we have proven that 

~] o f Ir(2)l [r(T~2)l #o(d2) < oo 
{~1,...,~~ ~ G~ ~ + 

Vjk(R;yI ,Y2, . . . ,])n+I) 
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This means that we have estimated the contribution to [ v+,R, from the tra- 
a jk~ ) 

jectories x(2), x(T)o),..., x(T"+12) which go at each step from one side of 
the corridor Cjk to another. 

Consider now an arbitrary trajectory x(Z), x(T2) ..... x(Tn+12) which 
goes along the corridor Cjk so that the reflections shown in Fig. 3 are 
permitted. Let x(Tm2)e0s m = 0 ,  1 ..... n + l ,  and for some m~>3 the 
scatterers (2~_~, (27~ lie on the other side of the corridor Cjk than (2~_~, 
s do. Recall that by point (iii) of Proposition 5.5 we have the following 
relation: 

dz m 4~m_ l('gm) 2 

dzm - 2 - -  jOrn - 1 P m  - 2 "L'm - -  2 COS ~ m  - -  2 COS ~/m -- l 

x [1 + O(('c,,,) 1 -I'- ("gin 2 ) - - 1 ) I  

where r,~ = Ix(Tin2) -  x ( T  m- 1)~)1 and ~]m is the reflection angle at the point 
x(T"2) .  It is easy to see that 

..ll_ ~m -- 2 -'~- ~'m 
rlm-- 2 + ~lm--1 2 

where (~ is the angle without sign between 
r ( T  m 12) = x(Tm2) - x ( T  m - ' 2 )  and o~ik. Hence 

~ rct-- 2"~ ~ m 
sin - -  = sin(r/,~_ 2 + r/,~_ 1) 

2 

the vector 

S O  

COS / ~ m - 2  COS ~ r n -  1 ~ 1(  cOS ~ m  2 "Jl- COS ~ ] m -  1) 2 

= [ (~ , . ) - '  + (~m ~)-~3~ [ I  + o ( ( ~ ) - '  + (~_~)-')3 

Thus 

dz m 16~m l(~'m) 2 

dzm_2 p m - , p ~ - 2 V m - 2 F ( v ~ )  ' + ( v , ,  2 ) - ' ]  2 

• [1 + O((r ' + (Tin_2)-1)] 
(~ 'm)  3 " f m T r n  2 

>/const �9 
17m ~ "gm 2 " ~'rn ~ ~rn -- 2 

Comparing this inequality with point (ii) of Proposition 5.5, one can see 
that the expansion coefficient dzm/dzm 2 of the double reflection shown in 
Fig. 3 is greater than the expansion coefficient dzm/dz,~_, of a single reflec- 

822/66/1-2-23 
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tion. This means that all the estimates we used for trajectories with only 
single reflections remain valid for general trajectories with both single and 
double reflections. So we get that 

Theorem 5.6 is proved. 

6. STATISTICAL BEHAVIOR OF TRAJECTORIES IN 
DISCRETE D Y N A M I C S  

Equation (3.9) implies that 

n 1 n - - 1  

(]x(T~2)-x(2)12> = ~ ~ ((r(T~2),r(T/2))> 
i = 0  j = O  

n 1 

=n(lr()~)[ 2 ) + 2  ~ (n- j ) ( ( r (2) , r (T/2) )>  
j = l  

(6.1) 

S O  

D =  lim <lx(TnA')-x(A')12> 
,,~ co 4n 

=~  ({r(X)l 2 > +~  ((r(2), r(T~s (6.2) 
n = l  

which is a discrete variant of the Einstein-Green-Kubo relation (1.5). In 
the case under consideration 

< l r ( X ) 1 2 >  = oo (6.3) 

(by Proposition 4.3) and 

I <(r(2), r(T"A))>I < oo (6.4) 

for any n/> 1 (by Theorem 5.6). A strong generalization of the last result is 
the following conjecture. 

C o n j e c t u r e  I. There exist C>0,  x>0 ,  and 1 > 7 > 0  such that for 
n~>l, 

I ((r(2), r(Tn2)) >[ ~< C exp( -  xn ~) (6.5) 
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For a periodic Lorentz gas with a finite horizon this was established 
in ref. 8. Numerical results reported in ref. 16 give for a square lattice of 
circular scatterers the asymptotics 

< (v(2), v(Tn2)) > ~ ( -  1)" exp(- ten ~) (6.6) 

with 7 = 0.86 +0.06 (apparently independent of the radius of scatterers). 
Here v(Tn2)=r(Tn2)/]r(Tn2)l is the velocity of the particle between the 
nth and (n+  1)th collisions, l i t  is noteworthy that the fast decrease of 
the velocity autocorrelation function in (6.6) implies that the series 
En%0 I((v(2), v(Tn(2)))] is convergent. However, the convergence of this 
series does not imply that the discrete diffusion coefficient D in (6.2) is finite 
(see in this connection refs. 9, 16), because the equality D = oo is related to 
(Ir(2)l 2) = oo and not to the divergence of the series of correlations.] 

In view of the relations (6.3), (6.4) we have from (6.1) that 
( [ x ( T " 2 ) -  x(Z)j 2 ) =  oo. To find the right normalization of 

n-- 1 

x ( T " 2 l - x ( 2 ) =  2 r(Tj2) 
j = 0  

for n ---, oo consider the sum 

n 1 

s.= Z gj 
j - 0  

of independent identically distributed random variables {j with 

~j s r(TJ2) __a r()o) 

The question we are interested in is: What is a right normalization for S. 
and what is the limit distribution of normalized S.? Since the variance of 
r(2) is infinite, it is not the classical case with the normalization in square 
root of the number of random variables, but still the variance diverges only 
logarithmically, so one may expect the appearance of some logarithmic 
corrections to the square root normalization. 

To study this question in more detail, let us consider the characteristic 
function of S,, 

Z,(t) = (exp[i(S, ,  t)] ) = [z(t)]" 

By Theorem 4.4 

[Z(t)] ~=exp n _~ 
j 1 

~j~(t, r 2 In I(t, r + (At, t) + O(Itl ~/4) 
k : l  
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S O  

l exp l i ( (n lSn) I /2 ' t ) l l  

t n 

---- IZ((nlnr/)i /2)] 

= exp n j 1 k=l n In n (n in n) 1/2' ~jk 

(At, t )+ O(Itl 9/4) ] ~  

+ ~  (n lnn)9 /s j J  

[ 1N Nj (In In n~]  
-- exp - ~ y~ y~ ~j~(t, oj~)2 + o \ In ~ / J  

j = l  k = l  

so 

Thus, the characteristic function of 

S. 
(n In n) 1/2 

converges to the Gaussian function 

1Ey~ exp - 2 j = l k = l  

so 

1 N  ~:~--Jl ~j~(t, ojk) 2} 
=exp {-- 2j~1 

n - - I  
_ E j = o  ~j 

(n In n) 1/2 

~jk(t, ~k)2} 

n - - I  

E j = o  ~j = ~ (6.7) lira (n In n) 1/2 
n ~ c ~  

where { is a Gaussian random variable with zero mean and the covarlance 
matrix 

N Xj 
(r162 = ~ ~ "jkOOjktCOjkm, 1, m = 1, 2 

j=l k=l 

where { =  (41, r ~jk = (e)jkl, cojk2). In (6.7) and later we consider the 
convergence of random variables in weak topology. 
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Now we formulate our main result. Its proof is based on Con- 
jectures I', II, and III, which are formulated below and concern some 
properties of the dependence of the vectors r(TJ2). 

T h e o r e m  6.1. Let the distribution of 2 c A  o be the Liouville 
measure #0(d~0 d r ) =  Z -~ cos ~o de  dr. Assume that Conjectures I', II, and 
IIl which are formulated below are true. Then 

- x ( ; . )  

lira (n in n) 1/2 - ~ (6.8) 
n ~ o c  

where { = (~ i ,  ~2) is a Gaussian random variable with zero mean and the 
covariance matrix 

N 
DI,~ = (~ l~m)  ~" ~ ~ O~jk(l)jklO)jkm, ], m = 1, 2 (6.9) 

j = t  k = t  

where 

1 L J 2  ~jk i + hjk -- hj/r + hjk 

and cojk = ((Ojkl, (Djk2) is the direction of the corridor Cjk; djk is the width 
of this corridor and h E are the distances from the scatterer Oj to its 
neighbors along the corridor C/k. 

Remark. In a stronger version of the theorem one may think of any 
distribution p(d2) of 2 on A o which is absolutely continuous with respect 
to #o(d2) with 

0 < ~  < #(d2)  < 
Co #o(d2) c~ 

A statement is that the limit (6.8) exists for any measure #(d2) satisfying 
these properties [and so it does not depend on #(d2)], but we will not 
discuss this stronger form of the theorem here. 

Proof. Actually we state that the asymptotic behavior for n ~ oo of 
the sum Z j=0 r(Tj2) is as if r(TJ2)were independent random variables. 
Some formal explanation of that comes from the fact that the correlation 
coefficient of r(Ti2) and r(TJ2) is 

((r(Ti2),  r( TJ2 ) ) ) 
K(i, j )  =- ( i r (T i2 )12)  ( ir(TJ2)12) l/i = O, i c j  



356 Bleher 

because the numerator is finite while the denominator is infinite in the last 
ratio. In the rigorous proof, however, we need much more difficult and fine 
estimates. 

Introduce a cutoff for r(2): 

r(.~(2) = {~(2), if otherwise Ir(2)l<~(nlnlnn)~/~ 

Since 

we have that 

Pr{ Ir(2)t t> (n In in n )  1/2 } ~ const �9 (n In In n) 1 (6.10) 

SO 

't  onst Pr r(TJ2) = r(")(TJ2 /> 1 - n - - -  
j j = o n In In n 

const = 1 - - -  
In inn 

lim Pr r(T;2) = r(")(TJ2 = 1 
n ~ @  j j = 0  

Hence to establish (6.8) it is enough to show that 

nlimo~ ~]~-~ r(n)(TJ2) 
J(n In n )  1/2 = ~ 

Let us calculate the asymptotics of the covariance 
(r~")(2), r(2")(2)) when n ~ oo. We have 

(6.11) 

matrix of r(n)(2)-- 

(n) " (n) (r l (,~) r m (2)> = rtr,~v~ 
J 

Irl ~< (n in In n) 1/2 

where v~ is the distribution of r(2). So by Proposition 4.2 

l, m =  1, 2 

[ ( ln In n'~] 
=Dtmlnn 1 + O \  lnn ] J  

(r~"~(,~) ~-~ 

N Nj (n In in n) 1/2 

( 1 + 2 2 
= ~ ~ ~ J Z hs(djk) -~5(R~176 

j ~ l  k = l  • 1 

= E O~jkO~jkl(Djkrn in n 1 + 0 \ 1-i-~n J J  
j 1 k = l  
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so that 

rm ( f l~)5=Dlm=(~,~m> , l , m = l ,  2 (6.12) lim (rl")(2) (") 
n~o~ Inn 

This shows that the covariance matrix of r(n)(2)/(lnn) ~/2 converges for 
n ~  to that of~. 

Let us estimate the covariance matrix of 

We have 

E 
j=O 

r(-)(TJ2) - S(~)(2) = (S]")(2), S(2")(2)) 

n I n - - I  

(S~)(2) S~)(2)) = ~ 2 (rl~)(Tg~) r~)(TJ2)) 
i - -O  j = l  

n - - 1  

= E 
j - -  - - n + l  

A natural extension of Conjecture I is the following. 

(n - t j l ) ( rS")(2)  r~)(TS2)) (6.13) 

Conjec ture  I'. 
j/>l andn>fl, 

I (rl")(2) r~)(TJ2)) I ~< Cexp(-Kf),  

This implies that 

In~ 1 (n_j)(rln)(2)r~l(TJ2) ) § <~n ~ [(rl")(2)r~)(TJ2))l<~ Con 
] j=~[  j = l  

Similarly, 

There exist C > 0, ~: > 0, and 1 > ~ > 0 such that for 

-- r m (TJ2)) ~< Con 
n + l  

On the other hand, by (6.12), 

[ ( ln In n'~] 
n(rln)(2) r~)(2) > = Dlmn ln n l + O k  lnn J ]  

r m ( T  2) /In in n \q  
( Z j = o  nlnnZ'/=~ ) = D i m  l q - O ~  

l, m = 1, 2 (6.14) 

Hence 

(6.15) 
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so that the covariance matrix of (n In n) -2/2 Y',~2~ r(')(TJ2) converges for 
n ~  oo to that of {. 

Now we use the celebrated Bernstein method of proving the central 
limit theorem for random processes. Here we follow ref. 8 with some 
natural modifications. Let us decompose the interval A = [0, n - 1 ]  into 
nonoverlapping subintervals 

(2) except the last one is equal in such a way that the length IZ~I2)[ of each A i 
to In/In inn] ,  while the length of each AI 2) is equal to [nT], where 

1 / 3 > 7 > 0  

and IA(p2)[ ~ [n/ln in n]. From the definition it follows that 

(1/2 ) ln ln n < p < 21n ln n 

We can write 

(6.16) 

n 1 p p 2 

Z r(")(TJ2) = ~ ~ r<')(Tj2) + Z E r<')(Tj2) 
j = O  s =  1 j~A~ 1) s= 1 jcA~ 2) 

Let m = ( p -  1)[nT]. By (6.10) 

SO 

p ~ l  p -  2 } c o n s t  
Pr ~ r(")(TS2)= ~ ~ r(m)(TJ)O ~1 

, = 1 s ~ ~]) ~ = 1 j ~ ~I? I In In m 

lim Pr 
n ~ o o  k s = 2  j~A~ 2) 

In addition, 

p - - 2  

(nlnn) -1/2 E E 
s= 1 j~d~ 2) 

By (6.16), (3/2) 7 - 1/2 < 0, so 

r(")(TJ2)= ~ ~ r(m)(TJ)~) =_ 
s= 1 j~A~ 2) 

[r(m)( TJ)~ )l ~ m(Tnlln ln m ) ) 2/2 n (3/2)~, - 1/2 

(6.17) 

(6.18) 

p - - 1  

lira (nlnn) -1/2 ~ ~ Ir(")(TJ2)l=0 (6.19) 
n~oo s ~ l  j~A~ 2) 

Relations (6.18), (6.19) show that the limit of (n In n )  -1 /2  n -  1 Z j=o  r(")(Ts2) as 
n --* oo is the same as the limit of 

p 

6.(;~) = E ~.,(,~) 
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where 

%, (2 )=  (nln n) 1/2 ~ r/,O(Tj2) (6.20) 

Let us remark that different ~s(2) are related to different parts of the tra- 
jectory { TJ2, j =  0, 1,.,  n -  1 } separated by the "corridors" A~2). Because of 
strong ergodic properties of the map T, one may expect that ~ , (2)  are 
almost independent for different s. For a periodic Lorentz gas with a finite 
horizon this statement was established in ref. 8. We formulate it in the form 
of a conjecture. 

C o n j e c t u r e  II. For any fixed teN2, 

nlifn (exp{i(t, ~ %,)}1-1~I (exp{i(t,%~)})=0 (6.21) 
s = l  s = l  

Remark that I-lP=I (exp{i(t, %, )} )  is the characteristic function of 
- P {~, of independent random variables {., with the sum {. - 52, = i 

• n s  d = ( Y n s  

The relation (6.21) implies that 

lim %= lim {n 
n ~ a o  t t ~ o o  

if the latter limit does exist. 
To show the existence of 

P 

lim ~ =  lim ~ ~,,s= 
/ / 4 0 ( 3  n ~ o o  s = l  

we have to verify Lindeberg's condition (see, e.g., ref. 25): For any t > 0, 

where 

P 

lim ( ~']  2 ) = 0  
s ~ l  

ns ns if !~,1 > t 

By Tchebyshev's inequality, 

( ] ~ ( t )  2 " )  ~ _ _  
n s  / 

(1r 
t 2 
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so our aim is to show that 
p 

lim ~ ( l~ns l a )=o  (6.22) 
n ~ c o  s = l  

We have 

(l~.sl4)= (L~.sl 4) 

= (n in n)-2 r(,,~(Tj2) 
j 1) 

-- (n in n) -2 2 ((r(n)( rjl)')' r(n)(TJ2)')) 
jl,J2,J3,J4~A~ 1) 

• (r(n)(TJ32), r(n)(TJ42)) ) (6.23) 

Let us first estimate in the last sum the sum of diagonal terms. Since 
(n in In n) 1/2 

([r(n)(~)[4) = f lrl4v~ f r 4 ~ 3 ~ C n l n l n n ( 6 . 2 4 )  
Irl ~< (n In In n) 1/2 0 

we have that 
H 

([r(~)(Tj2)[4)=[A~I)[ ([r(m(2)[4)>>.Cl-n~nnnlnlnn=Cn 2 (6.25) 
j~A~ 1) 

To estimate off-diagonal terms, we formulate the following general conjec- 
ture. Let 

diam{jl,..., jg} = max lJl--Jml 
l~Lrn<~k 

C o n j o e t u r o  III (Estimates of truncated correlation functions of the 
fourth order). There exist C >  0, x > 0, and 1 > 7 > 0  such that for n >1 1, 
[ 1 ,  12,  [ 3 ,  14 = 1, 2, and pairwise different Jl,  J2, J3, J4 E ~, 

I ( rl~( TJ12 ) r(n)tl2 , TJz2 ) rlj~( TJ3}; ) r14)( TJ4'~ ) ) l 

~< C~ exp[-~:(diam{j~,  J2, JJ, J4}) ']  

I(r~)(TjI2) r(mtTJ2)OI-r(mtTJ32)]2)t2 ~-- ,e t3 t 
(m Jl (m J2 )(rl~,)(TJ3/l))2[ --<rll (T ,~)r,2 (T 2) 

<~ C,,exp[ -~:(diam{j~, J2, J3}) ~'] 
I( [rl~'~(TJ~2)] 2 [rl~')(TJ=2)] 2 ) - (r~')(Tj12) )2 (rl],(Tj=2))2 I 

~< C. e x p ( - x  l J1 -J2[  e) 

I < [rlT)(TJ12)] 3 [r~g)(TJ22)] >l <<- C. e x p ( -  ~c [Jl --J217) 

where C~ = C([r~(2)14) .  
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This conjecture is closely related to the thermodynamic formalism 
developed for billiard systems in refs. 7, 8, and 24. The thermodynamic for- 
malism enables us to represent the invariant Liouville measure as a Gibbs 
measure on Z with the action of T as a shift of Z in 1. In this context the 
estimates formulated in Conjecture III are just the usual estimates of 
truncated correlation functions of a one-dimensional Gibbs measure. 

The number of quadruples {Jl, J2, J3, J4} with diam{jl ,  J2, J3,J4} ~<J 
and with fixed Jl does not exceed Cj 3, so we get from Conjecture III and 
(6.24) that 

(l~n~[4> = (n in n) -2 ~ ([rI"~(TJ~)~),r(n~(TJ2)L)] 
j l , J 2 , J 3 , J 4 ~ A ~  11 

x [r(")(TS~2), r(m(TJ4).)] > 

<~(nlnn)-2Conlnlnn ~ ~ j3exp(-~cj~)<~Cl(lnn) -2 
. ~1 j - 1  

S o  s ~ ~,~ 

P 

( l~,,[4> <<. C, ln ln n (ln n) -= 
s = l  

which implies (6.22). 
This finishes the proof of Theorem 6.1. 

7. STATISTICAL BEHAVIOR OF TRAJECTORIES IN 
C O N T I N U O U S - T I M E  D Y N A M I C S  

The aim of this section is to extend the main formula (6.8) to the con- 
tinuous-time dynamics. In what follows, to distinguish x(t) from x(2) we 
shall denote it x,. As before, we denote by x(2) = x(j, s, q) the point at 012j 
with natural coordinate s. Let v(2) = v(j, s, q) be the velocity vector of the 
particle between x(2) and x(T2). The angle between v(2) and the normal 
vector n at x(2) is equal to ~/, and Iv(2)P = 1. 

We shall assume that the initial conditions x,l ,=o and v,[t= o are 
random and 

xt l ,_o = x(2), v t [ ,_o= v(2) (7.1) 

where 2 is a random point in Ao distributed according to the Liouville 
measure #o(d2)=Z -1 cos q)do ds. Our main result in the present section 
concerns the description of the statistical behavior of x, as t ~ oe. We shall 
show that Theorem 6.1 implies that 

lim x , - x  o ~ (7.2) 
t -  ~ (t in/)1/2 N/~ 
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where r is the same as in Theorem 6.1 and 

= (Ir(~)L) =fA Irl v~ (7.3) 
0 

is the spatial mean of the length of free motion. Let us remark that by 
Proposition 4.3, z is finite. 

We shall use the following abstract lemma. 

Lemma 7.1. Assume that for any t~>0, a t ~ R  k and b t s N  are 
random variables on a probability space (X, B, #) and the probability 
distribution of a t converges as t ~ ~ in weak sense to a probability dis- 
tribution v(da), while bt converges as t ~ ~ almost surely to a constant b ~ 
Then the probability distribution of brat converges as t ~ m to that of b~ 
where the distribution of a is v(da). 

Proof. We have to show (26) that for any ~o ~ c l (~k ) ,  

tlim f cp(bt(x) at(x)) #(dx) : I r176 v(da) (7.4) 

Denote 

xt~= {x~XI Ibt(x)-b~ <e,  lat(x)[ < e  1/2} 

Then for any e > 0 there exists to > 0 such that #(X'~)> 1 - e  when t >  to. 
For x e Xt~, 

I~o(bt(x) at(x)) - ~p(b~ ~< H ~o II c,< ~ el/2 

s o  

lim qg(bt(x) at(x)) #(dx) - f q~(b~ #(dx) = 0 
t ---~ o o  

On the other hand, the weak convergence of at(x) implies that 

(7.5) 

tlim f q~(b~ f r176 (7.6) 

Since (7.5), (7.6) imply (7.4), Lemma 7.1 is proved. 

Let us denote by t n = t ,(2) the time of the nth reflection at the trajec- 
tory x t with the initial conditions (7.1), so that 

x~ =x(T',~) 
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Since between collisions the particle moves freely with velocity l, 

t . - t .  1= I x ( T n ) ~ ) - x ( T n - 1 ) ~ ) l  = [r(T"-~2)]  

hence 

n - - 1  

t . =  ~ lr(TJ)o)l 
j = O  

By the ergodic theorem we get that  almost surely 

n - - 1  

lim --=t" lim n ~ ~ tr(TJ2)l = ( I r ( 2 ) l ) - ~  
n ~  /7 n ~ o ~  j = 0  

This implies that almost  surely 

(7.7) 

t~ in t n 
lim . = 

,,~o~ n l n n  

and 

lira t . + 1 1 n t . + l _ l  
. ~ ~ t .  In t .  

Assume that t .  ~< t < t~ + ~. Then by Lemma 7.1 and the last two equations, 

x , - x o  l i ra  x , - x o  ~/~ x , - x o  (7.8) 
lira ( t l n t ) ~ / 2 -  ~ ( t-~lnt~-~l/2-z lira ( n l n n ) l / 2  

n ~ cx3 n ~ ~ 3  

Let us remark that  if t . < ~ t < t . + l ,  then x, lies in the segment [x (T"2) ,  
x ( T  "+ 12)], so I x , -  x(T"2) l  ~< Ir(T"2)[. Therefore almost surely 

lira x ' -  x(T~2) = 0 
- ~ ( n  I n  n) 1/2 

SO 

x, - x o x(T~2) - x(2) 
lira (n In n) 1/2 - lim (n In/7) 1/2 - -  ~ n ~ c o  n ~ o o  

so by (7.8) 

lim x• - x o 

,~  o~ (t In t )  1/2 

Formula  (7.2) is proved. 
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8. D I S C U S S I O N  

We have shown in Theorem 6.1 that in a periodic Lorentz gas with an 
infinite horizon 

X n - -  X 0 

lim (nlnn)l/2- ~ (8.1) 
n ~ o o  

(discrete dynamics) and 

x ( t ) -  x(O) ~ (8.2) 
lira (tlnt)l/2 

(continuous-time dynamics) where {=(~1 ,~2)  is a Gaussian random 
variable with zero mean and the covariance matrix 

U 
D,~ = (r162 = ~ ~ ~jkCOjk,~Ojkm, 1, m = 1, 2 (8.3) 

j = l  k = l  

where 

1 
~jk = 4 Z L~ 100, ] hjk dj 2 , hj~ = h~ + h~ (8.4) 

and ojk = (O,)jkl, (1)jk2) is the direction of the corridor Cjk; djk is the width 
of this corridor and h f  are the distances from the scatterer f2j to its 
neighbors along the corridor Cjk, and 

v =  < l r ( 2 ) l ) = f ~  Irl v~ 
0 

is the mean time of free motion. Our proof of Theorem 6.1 was based on 
Conjectures I', II, III, which are formulated in Section 6. They concern 
some estimates of the dependence of the free motion vectors r(TJ2), j 6  7/. 

Let us define the quadratic form generated by the covariance matrix, 

A(z , z )=  ~ Dtmz,Zm 
l,m = 1 ,2  

It follows from (8.3) that 

X Nj 
A(z , z )=  ~ Z c%(o~,z) 2 

j = l  k = l  

so that the covariance matrix is positive if there exist two nonparallel 
corridors. 
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Equation (8.2) shows that the diffusion coefficient 

1 
D = tlimoo ~ (Ix(t)  - x(0)t 2 ) 

is infinite and so we have a sort of "super'-diffusive behavior of trajectories 
x(t) as t ~ oo. In this context the number 

1 t �9 x( t)--  x(0)12) D= a lim 

is the coefficient of the "super"-diffusion. Actually we have a matrix of the 
coefficients of the "super"-diffusion, 

b = ( ( ~  lim x'(t)-x'(O) 
( t in 01/2 'li~naoo (tlnt) 1/2 / I f ,  m =  1,2 

By (8.2), (8.3) 

and 

( N N, ) 
j = l  k = l  l,m ~ 1,2 

1 N Uj 

J = l  k = l  

Similarly, (8.1) shows that the diffusion coefficient in discrete dynamics is 
infinite as well. It is noteworthy that there is a sort of duality between the 
behavior of the diffusion coefficients in continuous-time and discrete 
dynamics: For the continuous-time dynamics the diffusion coefficient turns 
out to be infinite because of the slow decrease of the velocity autocorrela- 
tion function [see (1.8)], while for the discrete dynamics it is infinite 
because of the infinite variance of the free motion vector and not because 
of the slow decrease of the correlation function of the free motion vectors. 
This explains a discrepancy between the properties of the diffusion coef- 
ficients in the continuous-time and discrete dynamics which was noticed in 
ref. 16. Furthermore, one may introduce the coefficient of "super"-diffusion 
in the discrete dynamics as 

l ( n l i m  ~ x _Xo 2) 
DO=4 ~ (n lnn)  1/2 
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By (8.1), (8.3) 

D ~ 1 1 ~1 k~= j c9~ (8.5) =~ <r162 =, 

Let us consider some particular cases. 

Square Lattice. Consider a square lattice with unit space and let the 
scatterers be circles of radius a < 1/2 centered at the sites of the lattice. 
Because of the square lattice symmetry the covarifince matrix 

( {l~,~) = 2D~ 

is diagonal. If a >~ x/2/4, there are only two pairs of basic corridors which 
are parallel to the x and y axes (we have one basic scatterer and two basic 
corridors in the direction of each axis which touch the basic scatterer from 
different sides). In that case 

1 1 
D ~  2 = ~  (1- -2a)  2 

If a < x/2/4, there are more basic corridors and with a decrease of a more 
and more new basic corridors appear. Let us consider the limit of low 
density, a --* 0. 

By Proposition 2.1 the direction ojk = (cojkl, co;k2) of any corridor is 
rational, so that COjk2/COjkl = p/q. We are interested in knowing for which 
p/q such a corridor does exist. Because of the symmetry of the square 
lattice, we may assume that p ~> 0; q > 0. We may also assume that p, q 
are relatively prime, ( p , q ) = l  [we suppose that ( 0 , 1 ) = 1  while 
(0, q) # 1, q > 1 ]. Let us project all the scatterers onto the y axis in parallel 
to the vector (q, p). Then a corridor in the direction (q, p) exists iff under 
this projection the images of all the scatterers do not cover the yaxis  
entirely. The projection of an integer point (n, m) is m - n(p/q) = r/q, and 
the projection of a scatterer with a center at (n, m) is a segment of length 
l=2a(p2+  q2)~/2/q with a center at r/q. So the corridor in the direction 
(q, p) exists iff 2a(p 2 + qZ)i/2/q < 1/q, or 

2 1'2 1 (p2+q ) /  <~a 

The width of this corridor is equal to 

1 
dpq - (p2  q_ q2)1/2 2a (8.6) 
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and the (minimal) period of the lattice along the corridor is equal to 

Lpq = (p2 + q2)1/2 (8.7) 

According to (8.5), 
Ne 

1 Z (8.8) 
D~ k=i 

where Nc is the number of basic corridors and we write ~k instead of ~jk 
since we have now only one basic scatterer. Actually it is more convenient 
to index each corridor by integer numbers p, q where the vector (q, p) is 
parallel to the direction of the corridor. [As before, we have for each vector 
(q, p) a pair of basic corridors which touch the basic scatterer from 
different sides. This gives an additional factor 2 in subsequent formulas.] 
So we rewrite the last formula as 

D O = y, O~pq 
(p ,q)~ Sa 

where the summation goes over the set 

Sa={(p,q) lq>O;p>/O;(p,q)=l;(p2+q2)l/2< 1 } 2a (8.9) 

By (8.4), (8.6), and (8.7) we get that 

1 
O ~  ~, ~ 2 2Zpqd2pq 

(p,q) E Sa (p,q) ~ Sa 

1 q2)l/2(.(D2 1 )2 = 27ra ~ (p2 q_ (P ,q)~Sa q_ q2)1/2 2a (8.10) 

We have not used yet that a is small. The inclusion-exclusion formula gives 
that for a --+ 0, 

~__ . (L'~2 I p~i ( 1)] Z 1 = 4  \2a] 1-75 [1+0(al/4)] 
( p , q ) e S a  

where the product goes over all prime numbers. By the Euler formula 

( 1 )  ( 1 1 1 ) -~  6 
1 -  7 = . . . . .  - 

SO 
= f t . ( l ) 2  6 3 

1 4 \2aJ -~[l+O(a1/4)]=8~-~a2[l+O(al/4)] (8.11) 
(p, q) E S a 

822/66/1-2-24 
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Similar calculations give also that 

1 (p2 -'k q2)1/2 _ [1 + 0(al/4)]  (8.12) 
- 4rca 3 (p,q)~Sa 

and 
1 3 

2 q2)1/2 - -  [1 + O(al/4)] 
(p,q)~Sa (p2+ 4ha 

From (8.11)-(8.13) we have that 

(8.13) 

2 
(p,q)~Sa 

so by (8.10), 

( )2 
1 - 2 a  1 (p2+q2)m (p2+q2)1/2 = ~ a  [1 +O(a~/4)] 

1 
D O - 87t2a2 [1 + 0(al/4)] (8.14) 

We will show in the Appendix that the mean length of free motion satisfies 
the estimates C~a -1 < ~ < C2a -1, where C2 > C1 > 0 are absolute con- 
stants, so the coefficient of "super"-diffusion D=(1/r )D ~ satisfies the 
estimates 

Ca- l < D < C' a -  1 (8.15) 

where C ' >  C > 0 are absolute constants. 

Triangular Lattice. Let the scatterers be circles of radius a < 1/2 
centered at the sites of the triangular lattice with unit space. Let el ,  e2 be 
a basis of the lattice, lell = I%1 = 1, (el, %) = 1/2. If a ~> x/3/4, there are no 

corridors and the system has a finite horizon. Let a < x/3/4. Because of the 
triangular lattice symmetry the covariance matrix {~t~,~)= 2D~ is again 
diagonal. To compute D o , we use the same scheme as we did for the square 
lattice and we get the following expression: 

Do 3 x/3 qZ)l/2- 2a - 4ha ~ (p2 + pq + q2)1/2 
(p,q)~ ro 2(P 2 + Pq + 

where 

Ta= {(p, q ) l q > 0 ; p ~ > 0 ;  (p, q ) =  1; Iqel-t-Pe2[ 

=(p2+pq+q2)l/2<~-~a t 
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For  a --+ 0, 

DO 2 5 x / 5 - 3 6  
- 64r?a2 [1 -}- O(al/4)] 

Again, as for the square lattice, the mean length of free mot ion  satisfies the 
estimates C ~ a  - ~  < ~ < C 2 a  -~ ,  so for the coefficient of "super"-diffusion we 
have the estimates (8.15). 

A P P E N D I X .  AN E S T I M A T E  OF T H E  M E A N  L E N G T H  
OF FREE M O T I O N  

Let us consider a square lattice of circular scatterers of radius a > 0. 
Our  aim is to prove that  for a--+0 the mean length of  free mot ion  

= ( I r ( 2 ) [ )  satisfies the estimates 

C,a 1 < z <  C 2 a - 1  (A1) 

where C2 > C1 > 0 are absolute constants.  Wi thout  p roof  this was stated in 
ref. 9. Our  p roof  is based on the following lemma. 

Lemma A1. Any segment [x, y ]  of  free mot ion  of  length 
i x -  y[ > 100a 1 belongs to a corridor.  

P r o o f .  Let y -  x = r = (r~, r2). We may  assume that  0 ~< r2 ~< rl and 
C O = r 2 / r  1 is irrational. Let us expand CO in a continued fraction, 
CO = [ a l ,  a2,... ]. Denote  

Pn__= [a l  ,..., a2] 
qn 

Let us choose n in such a way that  

(A2) 

For  the sake of definiteness we will assume that P n / q n  > CO. Then 

Pn Pn+l  P n - - l + a n + l P n  P n - - l + ( a n + l - - 1 ) p n  
- - > C O >  - -  _ _  .> 
qn qn + ~ qn -- I + an + 1 q~ qn 1 + (an + 1 - -  1 ) q~ 

P n  1 > .-. > - -  (A3) 
qn- -  I 

and 

0 < P " _ _ C O <  pn 
q,  qn 

Pn+ 1 1 a 
- -  - - -  < -  ( A 4 )  

qn+ l q n q n +  l 3q,, 
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Let x e 00~, y e O(2a, and 

0 7  = T q n T P n O  = T q n - l T P n  1 0  T q n T P n f ' )  

= T q n + q n  I T P n + P n - l f f ' 2 o  e - - 1  J r2  

Consider a line I~ which is tangent to O~, O~ from below and a line 12 
which is tangent to Oa, O~ from above (see Fig. 4). Then ll and 12 are 
parallel and their incline is equal to p/q. 

We state that: (i) l~ lies above 12; (ii) the strip between ll and 12 is a 
corridor; (iii) Ix, y] belongs to that corridor. To prove (i), let us remark 
that the inequalities (A3) imply that the segment Ix,y] passes between Oa 
and 07, so ll does lie above 12. Let us prove (ii). 

Let C be the strip between I1 and l 2. Assume that a scatterer O;~ exists 
which intersects C. Because of the periodicity of the lattice of scatterers in 
the direction of C, we may assume that O;, lies between O~ and O~ in the 
sense that the projection of the center of g2~ onto the line Ii lies between 
the projections of the centers of Oa and O~ onto this line. Let us denote the 

q P center of a scatterer De by Or ~ = ~, fl,.... Let O~ = T 1T2D ~. It is clear 
from Fig. 4 that O~, lies inside the angle / O a  O~ O~, so 

P , -1  co ~<P_ co ~< P~_ 09 
q~- 1 q q, 

and q < qn + q,,-1" This means that either p/q gives a better approximation 
of (o from above than p,,/q,, does or p/q gives a better approximation 
of a~ from below than p,,_ l/q,,-1 does. Since both are impossible for 
q < q, + q , -  1, we have proved (ii). 

To prove (iii), let us assume that [x, y] passes between scatterers 
[ T q n T P n ~ J  ff'2a and t qn P n ] J +  1 ~T1T21 Oa, j~>l.  Then, a simple geometrical \ - - 1  ~ 2  ! 

calculation shows 

2a 
tan ~l > (p2 + q])m (A5) 

lx 
f~  

ft~ 

f ~  x 

Fig. 4. An illustration for the proof of Lemma A1. 
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where t/is the angle between the segment Ix, y] and the line ll. But from 
(A4) it follows easily that 

a a x ~  
t l < - - ~ <  (A6) 

3qn 3(p]+q])1/2 

A contradiction between (A5) and (A6) proves that Ix, y] cannot pass 
between s c a t t e r e r s  ( T q n T p n ] j  ~"~ 6 and ( Y q n T P n ] J  + 1 ~ 1  ~ 2  ! ~ 1  ~2 ! ~'~6 J~> 1. Using the same 
arguments as in the proof of point (ii) above, we get that actually 
y ~ ~ Tq, TP,~J C~ for some j >/1. Lemma A 1 is proved. \Jr 1 ~t 2 I ~a6 

Let us prove now the estimates (A1). Let 

W= {2eA01 Ir(2)l > M a  -1} 

where M > 100 is a large constant which will be chosen later. We have 

~ =  <lr( , t ) l> =fA Ir(~)l ~o(d;O+f Ir(;dl ~o(d;~) 
o\ W W 

< < . g a - l + f  Ir(;o)l #o(d2) (AT) 
W 

To estimate ~w It(2)[/~o(d2), let us remark that if 2e  W, then 

[ r ( 2 ) l ) M a - l >  100a 1 

so by LemmaA1, Ix(2), x(T2)] belongs to some corridor Cg, so that 
W= U N%1 Wk, where 

Wk= {2~ WI Ix(2), y(2)] ~ Ck} 

By Proposition 4.2 we have the basic formula 

Pr{2 ~ W~, [r(2)[ ~> R, + (r(2), cok) > 0} c~[ _ =~-2 [1+  e~(R)] (AS) 

where e~ (R)=  O(R -1/:) as R ~ ~ .  An inspection of the proof of Proposi- 
tion 4.2 shows that an absolute constant M > 0  exists such that for 
R > Ma 1, 

Co .< C1 
(aR)l/2 ~ ]e~ (R)I ~< (aR)l/------ ~ 

where C1 > Co > 0 are absolute constants. Hence 

C2ccka <~ J ~wk Ir(2)[ po(d2 ) <~ C3o~ka 
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where C3 > C2 > 0 are absolute constants, and 

C 2 ( k ~  ~ c~k) a<~fvelr(2)l#o(d2)<<.C3(~ 1 ~k) a 
By (8.8), (8.14) 

SO 

Uc 1 
~k - 27r2a 2 E1 + O(al /4 ) ]  

k = l  

Bleher 

Cr176 Ir(2)l #o(d2)<~C(1)a 1 
d W 

where C (1) > C (~ > 0 are absolute constants. Hence we have from (A7) that 

C(O)a x < z < ( C ( 1 ) + M ) a  1 

E s t i m a t e  ( A 1 )  is p r o v e d .  
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